論文の概要: Fed-REACT: Federated Representation Learning for Heterogeneous and Evolving Data
- arxiv url: http://arxiv.org/abs/2509.07198v1
- Date: Mon, 08 Sep 2025 20:24:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:27.10964
- Title: Fed-REACT: Federated Representation Learning for Heterogeneous and Evolving Data
- Title(参考訳): Fed-REACT:不均一で進化するデータのためのフェデレーション表現学習
- Authors: Yiyue Chen, Usman Akram, Chianing Wang, Haris Vikalo,
- Abstract要約: Fed-REACTは、異種および進化するクライアントデータ用に設計されたフェデレート学習フレームワークである。
本稿では,表現学習段階の理論解析を行い,実世界のデータセットにおいてFed-REACTが優れた精度とロバスト性を達成することを実証した。
- 参考スコア(独自算出の注目度): 19.33095080645165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the high resource costs and privacy concerns associated with centralized machine learning, federated learning (FL) has emerged as an efficient alternative that enables clients to collaboratively train a global model while keeping their data local. However, in real-world deployments, client data distributions often evolve over time and differ significantly across clients, introducing heterogeneity that degrades the performance of standard FL algorithms. In this work, we introduce Fed-REACT, a federated learning framework designed for heterogeneous and evolving client data. Fed-REACT combines representation learning with evolutionary clustering in a two-stage process: (1) in the first stage, each client learns a local model to extracts feature representations from its data; (2) in the second stage, the server dynamically groups clients into clusters based on these representations and coordinates cluster-wise training of task-specific models for downstream objectives such as classification or regression. We provide a theoretical analysis of the representation learning stage, and empirically demonstrate that Fed-REACT achieves superior accuracy and robustness on real-world datasets.
- Abstract(参考訳): 集中型機械学習に関連する高リソースコストとプライバシの懸念により、フェデレーション学習(FL)は、クライアントがデータをローカルに保ちながら、グローバルモデルを協調的にトレーニングすることのできる、効率的な代替手段として登場した。
しかし、現実世界のデプロイメントでは、クライアントデータの分散は時間とともに進化し、クライアント間で大きく異なり、標準的なFLアルゴリズムの性能を低下させる不均一性が導入される。
本稿では,不均一で進化するクライアントデータを対象としたフェデレーション学習フレームワークであるFed-REACTを紹介する。
Fed-REACTは、表現学習と進化的クラスタリングを2段階のプロセスで組み合わせる: (1) 第一段階では、各クライアントはそのデータから特徴表現を抽出するローカルモデルを学び、(2) 第二段階では、サーバーは、これらの表現に基づいてクライアントを動的にクラスタにグループ化し、分類や回帰のような下流の目的のためにタスク固有のモデルのクラスタワイズトレーニングを調整する。
本稿では,表現学習段階の理論解析を行い,実世界のデータセットにおいてFed-REACTが優れた精度とロバスト性を達成することを実証した。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Adapter-based Selective Knowledge Distillation for Federated
Multi-domain Meeting Summarization [36.916155654985936]
会議要約は、利用者に凝縮した要約を提供するための有望な手法として登場した。
本稿では,適応型選択的知識蒸留法(AdaFedSelecKD)を提案する。
論文 参考訳(メタデータ) (2023-08-07T03:34:01Z) - FedCME: Client Matching and Classifier Exchanging to Handle Data
Heterogeneity in Federated Learning [5.21877373352943]
クライアント間のデータの均一性は、フェデレートラーニング(FL)における重要な課題の1つです。
クライアントマッチングと分類器交換によりFedCMEという新しいFLフレームワークを提案する。
実験結果から,FedCMEはFedAvg,FedProx,MOON,FedRSよりも高い性能を示した。
論文 参考訳(メタデータ) (2023-07-17T15:40:45Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - A Closer Look at Personalization in Federated Image Classification [33.27317065917578]
フェデレートラーニング(FL)は、分散化されたデータにまたがる単一のグローバルモデルを学ぶために開発された。
本稿では,グローバルモデルの収束後,フレキシブルなパーソナライゼーションを実現することができることを示す。
独立二段階パーソナライズされたFLフレームワークであるRepPerを提案する。
論文 参考訳(メタデータ) (2022-04-22T06:32:18Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Performance Optimization for Federated Person Re-identification via
Benchmark Analysis [25.9422385039648]
フェデレーション学習(Federated Learning)は、分散型クライアント間で共有モデルを学習する、プライバシ保護機械学習技術である。
本研究では,人間再同定(FedReID)にフェデレート学習を実装し,実世界のシナリオにおけるその性能を最適化する。
論文 参考訳(メタデータ) (2020-08-26T13:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。