論文の概要: Synthetic Data Generation with Lorenzetti for Time Series Anomaly Detection in High-Energy Physics Calorimeters
- arxiv url: http://arxiv.org/abs/2509.07451v1
- Date: Tue, 09 Sep 2025 07:22:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:27.201029
- Title: Synthetic Data Generation with Lorenzetti for Time Series Anomaly Detection in High-Energy Physics Calorimeters
- Title(参考訳): 高エネルギー物理量計における時系列異常検出のためのロレンゼッティを用いた合成データ生成
- Authors: Laura Boggia, Bogdan Malaescu,
- Abstract要約: 我々はLorenzetti Simulatorを用いて、注入されたカロリーメータ異常を伴う合成イベントを生成する。
次に、変換器ベースや他のディープラーニングモデルを含む時系列異常検出手法の感度を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in multivariate time series is crucial to ensure the quality of data coming from a physics experiment. Accurately identifying the moments when unexpected errors or defects occur is essential, yet challenging due to scarce labels, unknown anomaly types, and complex correlations across dimensions. To address the scarcity and unreliability of labelled data, we use the Lorenzetti Simulator to generate synthetic events with injected calorimeter anomalies. We then assess the sensitivity of several time series anomaly detection methods, including transformer-based and other deep learning models. The approach employed here is generic and applicable to different detector designs and defects.
- Abstract(参考訳): 多変量時系列における異常検出は、物理実験から得られるデータの質を保証するために不可欠である。
予期せぬエラーや欠陥が発生した瞬間を正確に特定することは不可欠であるが、ラベルの不足、未知の異常型、次元間の複雑な相関のために困難である。
ラベル付きデータの不足と信頼性に対処するために,ロレンゼッティシミュレータを用いて,挿入カロリー異常による合成事象を生成する。
次に、変換器ベースや他のディープラーニングモデルを含む時系列異常検出手法の感度を評価する。
ここでのアプローチは汎用的であり、異なる検出器の設計と欠陥に適用できる。
関連論文リスト
- Benchmarking Unsupervised Strategies for Anomaly Detection in Multivariate Time Series [0.0]
本稿では,最近提案されたiTransformerアーキテクチャに着目し,時系列異常検出のためのトランスフォーマベースアプローチについて検討する。
iTransformerの時系列異常検出への応用を探り、ウィンドウサイズ、ステップサイズ、モデル次元などの重要なパラメータがパフォーマンスに与える影響を分析し、(ii)多次元異常スコアから異常ラベルを抽出し、それらのラベルに対する適切な評価指標について議論する方法、(iii)トレーニング中に存在する異常データの影響を調査し、その影響を緩和する代替損失関数の有効性を評価し、(iv)包括的提示を行う。
論文 参考訳(メタデータ) (2025-06-25T16:08:22Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in
IIoT Systems [12.641578474466646]
DyEdgeGATは、IIoTシステムにおける早期故障検出の新しいアプローチである。
動作条件コンテキストをノードダイナミックスモデリングに組み込んで、その正確性と堅牢性を高める。
我々は,DyEdgeGATを人工データセットと実世界の産業規模フロー施設ベンチマークの両方を用いて厳格に評価した。
論文 参考訳(メタデータ) (2023-07-07T12:22:16Z) - AnomalyBERT: Self-Supervised Transformer for Time Series Anomaly
Detection using Data Degradation Scheme [0.7216399430290167]
時系列、特にラベルなしデータに対する異常検出タスクは、難しい問題である。
自己教師型モデルトレーニングに適切なデータ劣化スキームを適用することで、この問題に対処する。
自己認識機構に触発されて、時間的文脈を認識するトランスフォーマーベースのアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-05-08T05:42:24Z) - HFN: Heterogeneous Feature Network for Multivariate Time Series Anomaly
Detection [2.253268952202213]
MTSのためのヘテロジニアス特徴ネットワーク(HFN)に基づく,新しい半教師付き異常検出フレームワークを提案する。
まず、センサ埋め込みによって生成された埋め込み類似性グラフと、センサ値によって生成された特徴値類似性グラフを組み合わせて、時系列不均一グラフを構築する。
このアプローチは、ヘテロジニアスグラフ構造学習(HGSL)と表現学習の最先端技術を融合させる。
論文 参考訳(メタデータ) (2022-11-01T05:01:34Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Smart Meter Data Anomaly Detection using Variational Recurrent
Autoencoders with Attention [0.0]
本稿では,アテンション機構を備えた変分リカレントオートエンコーダに基づく教師なし異常検出手法を提案する。
スマートメーターの「汚れ」データを用いて、学習中の貢献度を減少させるために、欠落した値とグローバルな異常を事前に検出する。
論文 参考訳(メタデータ) (2022-06-08T19:39:51Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。