論文の概要: Deep Learning-Based Burned Area Mapping Using Bi-Temporal Siamese Networks and AlphaEarth Foundation Datasets
- arxiv url: http://arxiv.org/abs/2509.07852v1
- Date: Tue, 09 Sep 2025 15:29:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:27.379363
- Title: Deep Learning-Based Burned Area Mapping Using Bi-Temporal Siamese Networks and AlphaEarth Foundation Datasets
- Title(参考訳): バイテンポラルシームスネットワークとAlphaEarth Foundationデータセットを用いた深層学習に基づくバーンドエリアマッピング
- Authors: Seyd Teymoor Seydi,
- Abstract要約: そこで本研究では,AlphaEArthデータセットとSiamese U-Netディープラーニングアーキテクチャを組み合わせた,自動バーンエリアマッピング手法を提案する。
当社は,連続した米国におけるバーンSeverityデータセットのモニタリングトレンドを用いてモデルをトレーニングし,ヨーロッパを横断する17のリージョンで評価した。
実験結果から,提案手法は95%,IoU0.6,F1スコア74%の精度で優れた性能が得られることが示された。
- 参考スコア(独自算出の注目度): 0.6768558752130311
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate and timely mapping of burned areas is crucial for environmental monitoring, disaster management, and assessment of climate change. This study presents a novel approach to automated burned area mapping using the AlphaEArth dataset combined with the Siamese U-Net deep learning architecture. The AlphaEArth Dataset, comprising high-resolution optical and thermal infrared imagery with comprehensive ground-truth annotations, provides an unprecedented resource for training robust burned area detection models. We trained our model with the Monitoring Trends in Burn Severity (MTBS) dataset in the contiguous US and evaluated it with 17 regions cross in Europe. Our experimental results demonstrate that the proposed ensemble approach achieves superior performance with an overall accuracy of 95%, IoU of 0.6, and F1-score of 74% on the test dataset. The model successfully identifies burned areas across diverse ecosystems with complex background, showing particular strength in detecting partially burned vegetation and fire boundaries and its transferability and high generalization in burned area mapping. This research contributes to the advancement of automated fire damage assessment and provides a scalable solution for global burn area monitoring using the AlphaEarth dataset.
- Abstract(参考訳): 燃えた地域の正確なタイムリーなマッピングは、環境モニタリング、災害管理、気候変動の評価に不可欠である。
そこで本研究では,AlphaEArthデータセットとSiamese U-Netディープラーニングアーキテクチャを組み合わせた,自動バーンエリアマッピング手法を提案する。
AlphaEArth Datasetは、高解像度の光学的および熱的赤外線画像と総合的な地平線アノテーションで構成され、堅牢な燃焼領域検出モデルを訓練するための前例のない資源を提供する。
我々は,連続した米国におけるMTBSデータセットのモニタリングトレンドを用いてモデルをトレーニングし,ヨーロッパを横断する17のリージョンで評価した。
実験結果から,提案手法は95%,IoU0.6,F1スコア74%の精度で優れた性能が得られることが示された。
このモデルは、複雑な背景を持つ多様な生態系にまたがる焼畑の特定に成功し、部分的に燃えた植生や火の境界を検知し、その伝達性および焼畑マッピングの高一般化を示す。
本研究は,AlphaEarthデータセットを用いて,自動火災被害評価の高度化に寄与し,グローバルバーンエリアモニタリングのためのスケーラブルなソリューションを提供する。
関連論文リスト
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
本稿では,地球モニタリングタスクにおける深層学習アプリケーションを強化することを目的とした,リモートセンシングデータの自己監督を目的としたデータセットを提案する。
このデータセットは15テラピクセルのグローバルリモートセンシングデータにまたがっており、NEON、Sentinel、Satellogicによる1mの空間解像度データの新たなリリースなど、さまざまなソースの画像を組み合わせている。
このデータセットは、リモートセンシングデータの異なる課題に取り組むために開発されたMasked Autoencoderである。
論文 参考訳(メタデータ) (2025-01-14T13:42:22Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - FLOGA: A machine learning ready dataset, a benchmark and a novel deep
learning model for burnt area mapping with Sentinel-2 [41.28284355136163]
森林火災は人間や動物の生活、生態系、社会経済の安定に重大な脅威をもたらす。
本研究では、FLOGA(Forest wiLdfire Observations for the Greek Area)と名付けた機械学習可能なデータセットを作成し、導入する。
このデータセットは、山火事の前後に取得された衛星画像からなるため、ユニークなものである。
我々はFLOGAを用いて、複数の機械学習アルゴリズムとディープラーニングアルゴリズムの徹底的な比較を行い、バーント領域の自動抽出を行う。
論文 参考訳(メタデータ) (2023-11-06T18:42:05Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
本研究では, 自然災害の文脈において, 建物の損傷評価を正確に行うための深層学習手法の実装について検討する。
我々は,低品質・騒音ラベルの影響を考慮しつつ,新たな災害・地域への一般化の課題に取り組む。
我々の研究結果は、気候変動によって引き起こされる極端気象事象の影響評価を強化するための高度なAIソリューションの可能性と限界を示している。
論文 参考訳(メタデータ) (2023-09-03T03:37:04Z) - Rapid Deforestation and Burned Area Detection using Deep Multimodal
Learning on Satellite Imagery [3.8073142980733]
アマゾンの森林における森林破壊の推定と火災検出は、広大な面積のために大きな課題となっている。
マルチモーダル衛星画像とリモートセンシングは、アマゾン地域の森林破壊を推定し、山火事を検出するための有望なソリューションを提供する。
本研究では、畳み込みニューラルネットワーク(CNN)と包括的データ処理技術を用いて、これらの問題を解決するための新しいキュレートデータセットとディープラーニングベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-10T21:49:30Z) - Unlocking the Use of Raw Multispectral Earth Observation Imagery for Onboard Artificial Intelligence [3.3810628880631226]
本研究は,ターゲットイベントの検出のためのデータセット作成を自動化する新しい手法を提案する。
提案手法は、まず、空間帯域登録とジオレファレンスからなるパイプラインを適用することにより、生データを処理する。
Level-1C製品上で、イベント固有の最先端アルゴリズムを活用することで、ターゲットイベントを検出する。
本研究では,温熱ホットスポットを含むSentinel-2生データの最初のデータセットであるTHRawS (Thermal Hotspots in Raw Sentinel-2 data) を実現するために提案手法を適用した。
論文 参考訳(メタデータ) (2023-05-12T09:54:21Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Self-supervised Contrastive Learning for Volcanic Unrest Detection [4.152165675786138]
InSAR(Interferometric Synthetic Aperture Radar)データから測定した地盤変形は,火山活動の兆候と考えられる。
近年の研究では, 火山の変形信号の検出にSentinel-1 InSARデータと教師付き深層学習(DL)手法を用いることの可能性が示されている。
本稿では,ラベルのないInSARデータに隠された高品質な視覚表現を学習するために,自己教師付きコントラスト学習を用いることを提案する。
論文 参考訳(メタデータ) (2022-02-08T17:54:51Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
赤外線(IR)カメラは、照明条件や照明条件が悪ければ頑丈である。
既存のUDA手法を改善するためのアルゴリズムメタ学習フレームワークを提案する。
KAISTおよびDSIACデータセットのための最先端熱検出器を作成した。
論文 参考訳(メタデータ) (2021-10-07T02:28:18Z) - A Transfer Learning approach to Heatmap Regression for Action Unit
intensity estimation [50.261472059743845]
アクション・ユニット(英: Action Units、AUs)は、幾何学に基づく原子性顔面筋運動である。
本稿では,その位置と強度を共同で推定する新しいAUモデリング問題を提案する。
ヒートマップは、所定の空間的位置でAUが発生するか否かをモデル化する。
論文 参考訳(メタデータ) (2020-04-14T16:51:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。