論文の概要: Active Membership Inference Test (aMINT): Enhancing Model Auditability with Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2509.07879v1
- Date: Tue, 09 Sep 2025 16:00:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:27.391887
- Title: Active Membership Inference Test (aMINT): Enhancing Model Auditability with Multi-Task Learning
- Title(参考訳): アクティブメンバーシップ推論テスト(aMINT):マルチタスク学習によるモデル聴取性の向上
- Authors: Daniel DeAlcala, Aythami Morales, Julian Fierrez, Gonzalo Mancera, Ruben Tolosana, Javier Ortega-Garcia,
- Abstract要約: アクティブメンバーシップ推論テスト(英: Active Membership Inference Test、aMINT)は、機械学習モデルのトレーニング中に与えられたデータが使用されているかどうかを検出する方法である。
本稿では,2つのモデルを同時に学習するマルチタスク学習プロセスを提案する。
我々は、MobileNetのような軽量アーキテクチャから、Vision Transformerのようなより複雑なアーキテクチャまで、幅広いニューラルネットワークを用いて結果を提示する。
- 参考スコア(独自算出の注目度): 18.552238031865286
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Active Membership Inference Test (aMINT) is a method designed to detect whether given data were used during the training of machine learning models. In Active MINT, we propose a novel multitask learning process that involves training simultaneously two models: the original or Audited Model, and a secondary model, referred to as the MINT Model, responsible for identifying the data used for training the Audited Model. This novel multi-task learning approach has been designed to incorporate the auditability of the model as an optimization objective during the training process of neural networks. The proposed approach incorporates intermediate activation maps as inputs to the MINT layers, which are trained to enhance the detection of training data. We present results using a wide range of neural networks, from lighter architectures such as MobileNet to more complex ones such as Vision Transformers, evaluated in 5 public benchmarks. Our proposed Active MINT achieves over 80% accuracy in detecting if given data was used for training, significantly outperforming previous approaches in the literature. Our aMINT and related methodological developments contribute to increasing transparency in AI models, facilitating stronger safeguards in AI deployments to achieve proper security, privacy, and copyright protection.
- Abstract(参考訳): アクティブメンバーシップ推論テスト(英: Active Membership Inference Test、aMINT)は、機械学習モデルのトレーニング中に与えられたデータが使用されているかどうかを検出する方法である。
アクティブMINTでは、オリジナルモデルと監査モデルという2つのモデルの同時学習を伴う新しいマルチタスク学習プロセスを提案する。
この新しいマルチタスク学習アプローチは、ニューラルネットワークのトレーニングプロセスにおいて、最適化の目的としてモデルの監査可能性を統合するように設計されている。
提案手法では,MINT層への入力として中間活性化マップを組み込んだ。
5つの公開ベンチマークで評価した、MobileNetのような軽量アーキテクチャからVision Transformersのようなより複雑なアーキテクチャまで、幅広いニューラルネットワークを用いて結果を提示する。
提案したActive MINTは,与えられたデータがトレーニングに使用されるかどうかを80%以上の精度で検出する。
私たちのaMINTと関連する方法論開発は、AIモデルの透明性の向上に寄与し、適切なセキュリティ、プライバシ、著作権保護を達成するために、AIデプロイメントのより強力な保護を促進する。
関連論文リスト
- Smooth-Distill: A Self-distillation Framework for Multitask Learning with Wearable Sensor Data [0.0]
本稿では,人間の活動認識(HAR)とセンサ配置検出を同時に行うように設計された,新しい自己蒸留フレームワークであるSmooth-Distillを紹介する。
従来の蒸留法とは異なり, 提案手法では, モデル自体のスムーズな歴史バージョンを教師として利用している。
実験結果から,Smooth-Distill は異なる評価シナリオにおける代替手法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2025-06-27T06:51:51Z) - Approach to Finding a Robust Deep Learning Model [0.28675177318965045]
機械学習(ML)と人工知能(AI)のアプリケーションの開発は、多数のモデルのトレーニングを必要とする。
本稿ではメタアルゴリズムとして設計したモデル選択アルゴリズムを用いてモデルロバスト性を決定する新しい手法を提案する。
本フレームワークでは,学習モデルの堅牢性に及ぼすトレーニングサンプルサイズ,モデル重み,帰納的バイアスの影響について検討する。
論文 参考訳(メタデータ) (2025-05-22T20:05:20Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Multi Self-supervised Pre-fine-tuned Transformer Fusion for Better
Intelligent Transportation Detection [0.32634122554914]
インテリジェントトランスポートシステムは、高度な情報技術を組み合わせて、監視、検出、そして現代の交通に対する早期警告のようなインテリジェントなサービスを提供する。
知的輸送における既存の検出方法は2つの側面に制限されている。
まず、大規模データセット上で事前訓練されたモデル知識と、ターゲットタスクに必要な知識との間には違いがある。
第二に、ほとんどの検出モデルは、学習能力を制限する単一ソース学習のパターンに従う。
論文 参考訳(メタデータ) (2023-10-17T14:32:49Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
本稿では,人間の認知過程をシミュレートするために強化学習フレームワークを用いる。
また,マルチモーダル情報から特徴を抽出・融合するマルチエージェントフレームワークをデプロイした。
我々は、OS-MN40、OS-MN40-Miss、Cifar10データセットを用いて、3Dドメインと2Dドメインの両方でのアプローチの性能を示す。
論文 参考訳(メタデータ) (2023-08-26T07:55:32Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Reducing Overlearning through Disentangled Representations by
Suppressing Unknown Tasks [8.517620051440005]
視覚的特徴を学習するための既存のディープラーニングアプローチは、手元にあるタスクに必要なものよりも、過剰に学習し、より多くの情報を抽出する傾向がある。
プライバシー保護の観点からは、入力された視覚情報はモデルから保護されない。
未知のタスクを全て抑制することで、モデルオーバーラーニングを減らすためのモデル非依存のソリューションを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:31:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。