論文の概要: CardioComposer: Flexible and Compositional Anatomical Structure Generation with Disentangled Geometric Guidance
- arxiv url: http://arxiv.org/abs/2509.08015v1
- Date: Mon, 08 Sep 2025 23:08:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-11 15:16:52.20344
- Title: CardioComposer: Flexible and Compositional Anatomical Structure Generation with Disentangled Geometric Guidance
- Title(参考訳): CardioComposer: 伸縮型幾何学誘導を用いた柔軟・構成型解剖構造生成
- Authors: Karim Kadry, Shoaib Goraya, Ajay Manicka, Abdalla Abdelwahed, Farhad Nezami, Elazer Edelman,
- Abstract要約: 本研究では,3次元空間に埋め込まれた解釈可能な楕円体プリミティブを用いて,ヒト解剖学の非条件拡散モデルを導出する枠組みを提案する。
本手法は, 逆拡散過程の導出に幾何モーメントロスを適用した多部分割マップ内の特定の組織の選択を含む。
- 参考スコア(独自算出の注目度): 0.6312872285702812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models of 3D anatomy, when integrated with biophysical simulators, enable the study of structure-function relationships for clinical research and medical device design. However, current models face a trade-off between controllability and anatomical realism. We propose a programmable and compositional framework for guiding unconditional diffusion models of human anatomy using interpretable ellipsoidal primitives embedded in 3D space. Our method involves the selection of certain tissues within multi-tissue segmentation maps, upon which we apply geometric moment losses to guide the reverse diffusion process. This framework supports the independent control over size, shape, and position, as well as the composition of multi-component constraints during inference.
- Abstract(参考訳): 生体物理シミュレータと統合された3次元解剖学の生成モデルは、臨床研究と医療機器設計のための構造-機能関係の研究を可能にする。
しかし、現在のモデルは制御可能性と解剖学的リアリズムのトレードオフに直面している。
本研究では,3次元空間に埋め込まれた解釈可能な楕円体プリミティブを用いて,ヒト解剖学の非条件拡散モデルを導出するためのプログラム可能で構成可能なフレームワークを提案する。
本手法は, 逆拡散過程の導出に幾何モーメントロスを適用した多部分割マップ内の特定の組織の選択を含む。
このフレームワークは、サイズ、形状、位置に対する独立した制御をサポートし、推論中に複数のコンポーネントの制約を構成する。
関連論文リスト
- GRASPing Anatomy to Improve Pathology Segmentation [67.98147643529309]
本稿では,病的セグメンテーションモデルを強化するモジュール型プラグイン・アンド・プレイフレームワークGRASPを紹介する。
2つのPET/CTデータセット上でGRASPを評価し、系統的アブレーション研究を行い、フレームワークの内部動作について検討する。
論文 参考訳(メタデータ) (2025-08-05T12:26:36Z) - JADE: Joint-aware Latent Diffusion for 3D Human Generative Modeling [62.77347895550087]
JADEは人体形状の変化を微粒化制御で学習する生成フレームワークである。
私たちの重要な洞察は、人体を骨格構造に分解する共同認識の潜伏表現です。
提案した分解条件下でのコヒーレントで可塑性な人体形状を生成するため,カスケードパイプラインも提案する。
論文 参考訳(メタデータ) (2024-12-29T14:18:35Z) - A Diffusion Model for Simulation Ready Coronary Anatomy with Morpho-skeletal Control [1.053652600598537]
仮想的介入研究のために,潜在拡散モデルを用いて冠状動脈解剖学をカスタムに合成する方法を検討する。
われわれのフレームワークは、冠動脈解剖学を制御可能な方法で生成・編集することを可能にし、デバイス設計者が機械的洞察を導き出すことを可能にする。
論文 参考訳(メタデータ) (2024-07-22T13:44:06Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
本研究では, 解剖学的特徴と病理学的情報を組み合わせた汎用的セグメンテーションモデルを構築し, 病理学的特徴のセグメンテーション精度を高めることを目的とする。
我々の解剖学・病理学交流(APEx)訓練では,ヒト解剖学の問合せ表現に結合特徴空間をデコードする問合せベースのセグメンテーション変換器を用いている。
これにより、FDG-PET-CTとChest X-Rayの病理分類タスクにおいて、強力なベースライン法に比べて最大3.3%のマージンで、ボード全体で最高の結果を報告できる。
論文 参考訳(メタデータ) (2024-07-08T11:44:15Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeITは、同じカテゴリ内で共有される暗黙のテンプレートフィールドを持つ解剖学的構造を表す。
これにより、インスタンス形状とテンプレート形状との対応性の制約を強化することにより、暗黙テンプレートフィールドが有効なテンプレートを生成する。
テンプレートインタラクションモジュールは、有効なテンプレートシェイプとインスタンスワイドの潜在コードとを相互作用することで、目に見えないシェイプを再構築するために導入される。
論文 参考訳(メタデータ) (2023-12-11T07:09:32Z) - Shape of my heart: Cardiac models through learned signed distance functions [33.29148402516714]
本研究では、リプシッツ正則性を持つ3次元深部符号距離関数を用いて心臓の形状を再構成する。
この目的のために、心臓MRIの形状を学習し、複数の室の空間的関係をモデル化する。
また,本手法は1つの心室からの点雲などの部分的データから解剖モデルを再構築することも可能であることを示す。
論文 参考訳(メタデータ) (2023-08-31T09:02:53Z) - Pairwise-Constrained Implicit Functions for 3D Human Heart Modelling [60.56741715207466]
我々は、心を相互依存型SDFの集合としてモデル化するペアワイズ拘束型SDFアプローチを導入する。
本手法は, 単SDF, UDF, ボクセルベース, セグメンテーションベースを用いて, 内部構造精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-07-16T10:07:15Z) - Statistical Shape Modeling of Biventricular Anatomy with Shared
Boundaries [16.287876512923084]
本稿では,共有境界を持つ多臓器解剖学の統計的形状モデルを構築するための汎用的で柔軟なデータ駆動手法を提案する。
心臓の共有境界における形状変化は、非協調的収縮と低臓器灌流を引き起こす潜在的な病理学的変化を示す可能性がある。
論文 参考訳(メタデータ) (2022-09-06T15:54:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。