論文の概要: Agentic LLMs for Question Answering over Tabular Data
- arxiv url: http://arxiv.org/abs/2509.09234v1
- Date: Thu, 11 Sep 2025 08:12:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-12 16:52:24.286333
- Title: Agentic LLMs for Question Answering over Tabular Data
- Title(参考訳): 語彙データを用いた質問応答のためのエージェントLLM
- Authors: Rishit Tyagi, Mohit Gupta, Rahul Bouri,
- Abstract要約: Tabular Data (Table QA) に対する質問回答は、現実世界のテーブルの構造、サイズ、データタイプが多様であることから、ユニークな課題を提示している。
本稿では,我々の方法論,実験結果,代替手法について詳述し,テーブルQAの強度と限界について考察する。
- 参考スコア(独自算出の注目度): 6.310433217813068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Question Answering over Tabular Data (Table QA) presents unique challenges due to the diverse structure, size, and data types of real-world tables. The SemEval 2025 Task 8 (DataBench) introduced a benchmark composed of large-scale, domain-diverse datasets to evaluate the ability of models to accurately answer structured queries. We propose a Natural Language to SQL (NL-to-SQL) approach leveraging large language models (LLMs) such as GPT-4o, GPT-4o-mini, and DeepSeek v2:16b to generate SQL queries dynamically. Our system follows a multi-stage pipeline involving example selection, SQL query generation, answer extraction, verification, and iterative refinement. Experiments demonstrate the effectiveness of our approach, achieving 70.5\% accuracy on DataBench QA and 71.6\% on DataBench Lite QA, significantly surpassing baseline scores of 26\% and 27\% respectively. This paper details our methodology, experimental results, and alternative approaches, providing insights into the strengths and limitations of LLM-driven Table QA.
- Abstract(参考訳): Tabular Data (Table QA) に対する質問回答は、現実世界のテーブルの構造、サイズ、データタイプが多様であることから、ユニークな課題を提示している。
SemEval 2025 Task 8 (DataBench)は、構造化クエリに正確に応答するモデルの能力を評価するために、大規模でドメイン幅のデータセットで構成されるベンチマークを導入した。
本稿では,GPT-4o,GPT-4o-mini,DeepSeek v2:16bなどの大規模言語モデル(LLM)を利用してSQLクエリを動的に生成する自然言語 to SQL(NL-to-SQL)アプローチを提案する。
提案システムは,サンプル選択,SQLクエリ生成,回答抽出,検証,反復的改善を含む多段階パイプラインに従う。
提案手法の有効性を実証し,DataBench Lite QAでは70.5\%,DataBench Lite QAでは71.6\%,ベースラインスコアでは26\%,27\%を大きく上回った。
本稿では, LLM駆動型テーブルQAの長所と短所について考察し, 方法論, 実験結果, 代替手法について述べる。
関連論文リスト
- RAISE: Reasoning Agent for Interactive SQL Exploration [47.77323087050061]
本稿では,スキーマリンク,クエリ生成,反復的改善を1つのエンドツーエンドコンポーネントに統一する新しいフレームワークを提案する。
本手法は、不慣れなデータベースを扱う際に、人間がどう答えるかをエミュレートする。
論文 参考訳(メタデータ) (2025-06-02T03:07:08Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - RoundTable: Leveraging Dynamic Schema and Contextual Autocomplete for Enhanced Query Precision in Tabular Question Answering [11.214912072391108]
現実世界のデータセットは、大きな属性と複雑な値の配列を特徴とすることが多い。
従来の手法ではデータセットのサイズと複雑さをLarge Language Modelsに完全にリレーすることはできません。
入力テーブル上でFTS(Full-Text Search)を利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T13:13:06Z) - MAG-SQL: Multi-Agent Generative Approach with Soft Schema Linking and Iterative Sub-SQL Refinement for Text-to-SQL [15.824894030016187]
近年,テキスト・トゥ・コンテクスト・タスクにおいて,インコンテキスト・ラーニングに基づく手法が顕著な成功を収めている。
これらのモデルのパフォーマンスと、複雑なデータベーススキーマを持つデータセット上でのヒューマンパフォーマンスとの間には、依然として大きなギャップがあります。
本フレームワークでは,データベース内の列の選択にテーブルの要約を含むエンティティベースの手法を用い,それらの複雑な質問を分解するために,新たな目標条件分解手法を導入する。
論文 参考訳(メタデータ) (2024-08-15T04:57:55Z) - KET-QA: A Dataset for Knowledge Enhanced Table Question Answering [63.56707527868466]
本研究では,TableQAの外部知識源として知識ベース(KB)を用いることを提案する。
すべての質問は、答えるテーブルとサブグラフの両方からの情報を統合する必要がある。
我々は,膨大な知識サブグラフから関連する情報を抽出するために,レトリバー・レゾナー構造パイプラインモデルを設計する。
論文 参考訳(メタデータ) (2024-05-13T18:26:32Z) - MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation [10.726734105960924]
大規模言語モデル(LLM)は、テキストからタスクへの微調整アプローチを大幅に上回る、ICL(In-context Learning)ベースの手法を実現している。
本研究は,LLMのプロンプトに対する感受性を考察し,複数のプロンプトを活用してより広い探索空間を探索する手法を提案する。
生成したクエリの精度と効率の両面から,BIRD上に新たなSOTA性能を確立する。
論文 参考訳(メタデータ) (2024-05-13T04:59:32Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
人々は主に、データ分析を行うか、特定の質問に答えるためにテーブルをコンサルティングします。
そこで本研究では,テキスト生成モデルに人間的な推論を行なわなければならない,クエリ中心のテーブル要約タスクを新たに定義する。
このタスクには,2,934テーブル上の7,111の人間注釈付きクエリ-サマリーペアを含む,QTSummという新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:43:51Z) - Table Meets LLM: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study [44.39031420687302]
大規模言語モデル(LLM)は、自然言語(NL)に関連する課題を解決するために、数ショットの推論器として魅力的になってきている。
LLMの構造的理解能力を評価するためのベンチマークを設計して,これを理解しようと試みる。
重要な値や範囲識別など,効率的な構造的プロンプトのための$textitself-augmentation$を提案する。
論文 参考訳(メタデータ) (2023-05-22T14:23:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。