論文の概要: Arabic Large Language Models for Medical Text Generation
- arxiv url: http://arxiv.org/abs/2509.10095v1
- Date: Fri, 12 Sep 2025 09:37:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-15 16:03:08.03566
- Title: Arabic Large Language Models for Medical Text Generation
- Title(参考訳): 医療用テキスト生成のためのアラビア語大言語モデル
- Authors: Abdulrahman Allam, Seif Ahmed, Ali Hamdi, Ammar Mohammed,
- Abstract要約: 本研究では,アラビア語医療用テキスト生成のための大規模言語モデル(LLM)を提案する。
このシステムは、正確な医療アドバイス、診断、薬物レコメンデーション、およびユーザ入力に基づく治療計画を提供することによって、患者を支援するように設計されている。
- 参考スコア(独自算出の注目度): 0.5483130283061118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient hospital management systems (HMS) are critical worldwide to address challenges such as overcrowding, limited resources, and poor availability of urgent health care. Existing methods often lack the ability to provide accurate, real-time medical advice, particularly for irregular inputs and underrepresented languages. To overcome these limitations, this study proposes an approach that fine-tunes large language models (LLMs) for Arabic medical text generation. The system is designed to assist patients by providing accurate medical advice, diagnoses, drug recommendations, and treatment plans based on user input. The research methodology required the collection of a unique dataset from social media platforms, capturing real-world medical conversations between patients and doctors. The dataset, which includes patient complaints together with medical advice, was properly cleaned and preprocessed to account for multiple Arabic dialects. Fine-tuning state-of-the-art generative models, such as Mistral-7B-Instruct-v0.2, LLaMA-2-7B, and GPT-2 Medium, optimized the system's ability to generate reliable medical text. Results from evaluations indicate that the fine-tuned Mistral-7B model outperformed the other models, achieving average BERT (Bidirectional Encoder Representations from Transformers) Score values in precision, recall, and F1-scores of 68.5\%, 69.08\%, and 68.5\%, respectively. Comparative benchmarking and qualitative assessments validate the system's ability to produce coherent and relevant medical replies to informal input. This study highlights the potential of generative artificial intelligence (AI) in advancing HMS, offering a scalable and adaptable solution for global healthcare challenges, especially in linguistically and culturally diverse environments.
- Abstract(参考訳): 効率的な病院管理システム(HMS)は、過密、限られた資源、緊急医療の可用性の低下といった課題に対処するために、世界中で重要である。
既存の方法は、特に不規則な入力や表現不足言語に対して、正確でリアルタイムな医療アドバイスを提供する能力に欠けることが多い。
これらの制約を克服するために,アラビア語医療用テキスト生成のための大規模言語モデル(LLM)を微調整する手法を提案する。
このシステムは、正確な医療アドバイス、診断、薬物レコメンデーション、およびユーザ入力に基づく治療計画を提供することによって、患者を支援するように設計されている。
この研究手法では、ソーシャルメディアプラットフォームからユニークなデータセットを収集し、患者と医師の実際の医療会話をキャプチャする必要があった。
患者への苦情と医療アドバイスを含むデータセットは、正しく浄化され、複数のアラビア方言を考慮に入れられるように前処理された。
Mistral-7B-Instruct-v0.2、LLaMA-2-7B、GPT-2 Mediumのような細調整された最先端生成モデルは、信頼できる医療テキストを生成するシステムの能力を最適化した。
評価の結果、微調整されたMistral-7Bモデルは、それぞれ68.5\%、69.08\%、68.5\%の精度、リコール、F1スコアの平均BERT(Bidirectional Encoder Representations from Transformers)を達成し、他のモデルよりも優れていた。
比較ベンチマークと質的な評価は、非公式な入力に対する一貫性と関連する医療応答を生成するシステムの能力を検証する。
本研究は,HMS推進における生成的人工知能(AI)の可能性を強調し,特に言語的,文化的に多様な環境において,グローバル医療の課題に対してスケーラブルで適応可能なソリューションを提供する。
関連論文リスト
- MedQARo: A Large-Scale Benchmark for Medical Question Answering in Romanian [50.767415194856135]
ルーマニア初の大規模医療QAベンチマークであるMedQARoを紹介する。
がん患者に関連する102,646のQAペアからなる高品質で大規模なデータセットを構築した。
論文 参考訳(メタデータ) (2025-08-22T13:48:37Z) - Adapting LLMs for the Medical Domain in Portuguese: A Study on Fine-Tuning and Model Evaluation [1.922611370494431]
本研究は,ポルトガル語における医療エージェントとしての大規模言語モデル(LLM)の性能を評価する。
InternLM2モデルは、当初医療データに関するトレーニングを受けており、全体的なパフォーマンスが最高であった。
ChatBodeから派生したDrBodeモデルは、取得した医療知識を壊滅的に忘れる現象を示した。
論文 参考訳(メタデータ) (2024-09-30T19:10:03Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
医療用語を患者に親しみやすい平易な言語に簡略化することを目的とした,レイ定義の自動生成という新たなタスクを導入する。
このデータセットは、5万以上のユニークな(医療用語、日常の定義)ペアと30万の言及からなる。
また、データフィルタリング、拡張、選択を相乗化してデータ品質を改善する、データ中心のHuman-AIパイプラインも開発しました。
論文 参考訳(メタデータ) (2023-12-24T23:01:00Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
大規模言語モデル(LLM)は、自然言語理解において顕著な能力を示した。
LLMは、ドメイン固有の知識が不足しているため、医学的応用のような正確性を必要とする領域で苦労している。
PMC-LLaMAと呼ばれる医療応用に特化した強力なオープンソース言語モデルの構築手順について述べる。
論文 参考訳(メタデータ) (2023-04-27T18:29:05Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。