論文の概要: Learning Concave Bid Shading Strategies in Online Auctions via Measure-valued Proximal Optimization
- arxiv url: http://arxiv.org/abs/2509.10693v1
- Date: Fri, 12 Sep 2025 21:11:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:22.732483
- Title: Learning Concave Bid Shading Strategies in Online Auctions via Measure-valued Proximal Optimization
- Title(参考訳): オンラインオークションにおけるコンケーブバイドシェーディング戦略の学習
- Authors: Iman Nodozi, Djordje Gligorijevic, Abhishek Halder,
- Abstract要約: 本研究は,評価値最適化問題として,第1価格オークションの入札シェーディング戦略を提案する。
入札シェーディングの標準パラメトリック形式について検討し,シェーディングパラメータの連成分布に対する凸最適化として問題を定式化する。
得られた測度値の凸最適化問題は閉形式解を持つことを示す。
- 参考スコア(独自算出の注目度): 1.0707220178592598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes a bid shading strategy for first-price auctions as a measure-valued optimization problem. We consider a standard parametric form for bid shading and formulate the problem as convex optimization over the joint distribution of shading parameters. After each auction, the shading parameter distribution is adapted via a regularized Wasserstein-proximal update with a data-driven energy functional. This energy functional is conditional on the context, i.e., on publisher/user attributes such as domain, ad slot type, device, or location. The proposed algorithm encourages the bid distribution to place more weight on values with higher expected surplus, i.e., where the win probability and the value gap are both large. We show that the resulting measure-valued convex optimization problem admits a closed form solution. A numerical example illustrates the proposed method.
- Abstract(参考訳): 本研究は,評価値最適化問題として,第1価格オークションの入札シェーディング戦略を提案する。
入札シェーディングの標準パラメトリック形式について検討し,シェーディングパラメータの連成分布に対する凸最適化として問題を定式化する。
各オークションの後、シェーディングパラメータ分布は、データ駆動エネルギー関数を持つ正規化ワッサーシュタイン近位更新によって適応される。
このエネルギー関数はコンテキスト、すなわちドメイン、広告スロットタイプ、デバイス、ロケーションなどのパブリッシャ/ユーザ属性に条件付きである。
提案アルゴリズムは,期待余剰率の高い値,すなわち勝利確率と値ギャップがともに大きい値に対して,入札分布をより重み付けすることを推奨する。
得られた測度値の凸最適化問題は閉形式解を持つことを示す。
数値的な例は提案手法を例証する。
関連論文リスト
- Indirect Query Bayesian Optimization with Integrated Feedback [17.66813850517961]
我々は,未知関数の条件付き期待値$f$を最適化することで,統合されたフィードバックが与えられるような,ベイズ最適化の新たなクラスを開発する。
目的は、条件分布によって変換された空間を適応的にクエリし、観察することで、$f$のグローバルな最適値を見つけることである。
これは、プライバシ、ハードウェア、計算上の制約による直接的なフィードバックにアクセスできない現実世界のアプリケーションによって動機付けられている。
論文 参考訳(メタデータ) (2024-12-18T07:20:33Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
本稿では,2段階の適応性を持つオンライン凸最適化手法を提案する。
我々は$mathcalO(log V_T)$, $mathcalO(d log V_T)$, $hatmathcalO(sqrtV_T)$ regret bounds for strong convex, exp-concave and convex loss function。
論文 参考訳(メタデータ) (2023-07-17T09:55:35Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
我々はヘシアンの形成が困難である問題に対する分散最適化法を検討する。
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
論文 参考訳(メタデータ) (2022-03-18T05:49:13Z) - Implicit Rate-Constrained Optimization of Non-decomposable Objectives [37.43791617018009]
機械学習における制約付き最適化問題の一家系を考察する。
我々のキーとなる考え方は、閾値パラメータをモデルパラメータの関数として表現するレート制約のある最適化を定式化することである。
本稿では, 標準勾配法を用いて, 結果の最適化問題を解く方法を示す。
論文 参考訳(メタデータ) (2021-07-23T00:04:39Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Random Hypervolume Scalarizations for Provable Multi-Objective Black Box
Optimization [8.90548944387431]
本稿では、$f(x)$が競合する可能性のある目的のベクトルを出力する多目的最適化について考察する。
証明可能な収束保証を伴う多目的最適化プロセスに、任意の証明可能な収束単目的最適化プロセスが、強制的に変換可能であることを示す。
論文 参考訳(メタデータ) (2020-06-08T15:00:30Z) - Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian
Optimization with Application to Aircraft Design [41.74498230885008]
我々は、より正確に混合された制約問題を解決するために、いわゆる超効率的なグローバル最適化アルゴリズムを適用する。
本研究は, 数値実験におけるアプローチの可能性を示すものである。
論文 参考訳(メタデータ) (2020-05-11T12:59:09Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
ラッソ型問題に適した行列逆転のない効率的な暗黙微分アルゴリズムを提案する。
提案手法は,解の空間性を利用して高次元データにスケールする。
論文 参考訳(メタデータ) (2020-02-20T18:43:42Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。