論文の概要: MIS-LSTM: Multichannel Image-Sequence LSTM for Sleep Quality and Stress Prediction
- arxiv url: http://arxiv.org/abs/2509.11232v1
- Date: Sun, 14 Sep 2025 12:19:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:22.98637
- Title: MIS-LSTM: Multichannel Image-Sequence LSTM for Sleep Quality and Stress Prediction
- Title(参考訳): MIS-LSTM: 睡眠の質とストレス予測のための多チャンネル画像シーケンスLSTM
- Authors: Seongwan Park, Jieun Woo, Siheon Yang,
- Abstract要約: MIS-LSTMは、睡眠品質とストレス予測のためのLSTMシーケンスモデルでCNNエンコーダと結合するハイブリッドフレームワークである。
UALREは不確実性を認識したアンサンブルであり、自信の低い多数決と自信の強い個人の予測を覆す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents MIS-LSTM, a hybrid framework that joins CNN encoders with an LSTM sequence model for sleep quality and stress prediction at the day level from multimodal lifelog data. Continuous sensor streams are first partitioned into N-hour blocks and rendered as multi-channel images, while sparse discrete events are encoded with a dedicated 1D-CNN. A Convolutional Block Attention Module fuses the two modalities into refined block embeddings, which an LSTM then aggregates to capture long-range temporal dependencies. To further boost robustness, we introduce UALRE, an uncertainty-aware ensemble that overrides lowconfidence majority votes with high-confidence individual predictions. Experiments on the 2025 ETRI Lifelog Challenge dataset show that Our base MISLSTM achieves Macro-F1 0.615; with the UALRE ensemble, the score improves to 0.647, outperforming strong LSTM, 1D-CNN, and CNN baselines. Ablations confirm (i) the superiority of multi-channel over stacked-vertical imaging, (ii) the benefit of a 4-hour block granularity, and (iii) the efficacy of modality-specific discrete encoding.
- Abstract(参考訳): 本稿では、マルチモーダルライフログデータから、睡眠の質とストレス予測のためのLSTMシーケンスモデルとCNNエンコーダを結合するハイブリッドフレームワークMIS-LSTMを提案する。
連続センサストリームはまずN時間ブロックに分割され、マルチチャネル画像としてレンダリングされる。
Convolutional Block Attention Module は2つのモダリティを洗練されたブロック埋め込みに融合させ、LSTM がそれを集約して長期の時間的依存関係をキャプチャする。
より堅牢性を高めるために,自信の低い多数決を高信頼の個人予測で上回る不確実性に配慮したアンサンブルであるUALREを導入する。
2025 ETRI Lifelog Challengeデータセットの実験では、我々のベースMISLSTMはマクロ-F1 0.615を達成し、UALREアンサンブルではスコアは0.647に向上し、1D-CNN、CNNベースラインを上回った。
訳語 確認
(i)積層垂直イメージングによるマルチチャネルの優位性
(二)四時間ブロックの粒度の利点及び
三 モダリティ特化離散符号化の有効性
関連論文リスト
- One-Way Ticket:Time-Independent Unified Encoder for Distilling Text-to-Image Diffusion Models [65.96186414865747]
テキスト・ツー・イメージ(T2I)拡散モデルは、推論速度と画質のトレードオフに直面している。
学生モデルUNetアーキテクチャのための最初の時間非依存の統一TiUEを紹介する。
ワンパススキームを使用して、TiUEは複数のデコーダタイムステップにまたがるエンコーダ機能を共有し、並列サンプリングを可能にする。
論文 参考訳(メタデータ) (2025-05-28T04:23:22Z) - Unlocking the Power of LSTM for Long Term Time Series Forecasting [27.245021350821638]
本稿では, sLSTM 上に実装したP-sLSTM という単純なアルゴリズムを提案する。
これらの改良により、TSFにおけるsLSTMの性能が大幅に向上し、最先端の結果が得られた。
論文 参考訳(メタデータ) (2024-08-19T13:59:26Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) は Consistency Models (CM) の一般化である
CTMは、対戦訓練とスコアマッチング損失を効果的に組み合わせることで、パフォーマンスを向上させる。
CMとは異なり、CTMのスコア関数へのアクセスは、確立された制御可能/条件生成メソッドの採用を合理化することができる。
論文 参考訳(メタデータ) (2023-10-01T05:07:17Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
クロスモダリティ磁気共鳴(MR)画像合成は、与えられたモダリティから欠落するモダリティを生成するために用いられる。
既存の(教師付き学習)手法は、効果的な合成モデルを訓練するために、多くのペア化されたマルチモーダルデータを必要とすることが多い。
マルチスケールトランスフォーマーネットワーク(MT-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T11:40:40Z) - Image Classification using Sequence of Pixels [3.04585143845864]
本研究では,繰り返しニューラルネットワークを用いた逐次画像分類法の比較を行った。
本稿では,Long-Short-Term memory(LSTM)やBidirectional Long-Short-Term memory(BiLSTM)アーキテクチャに基づく手法について述べる。
論文 参考訳(メタデータ) (2022-09-23T09:42:44Z) - A Multi-Stage Multi-Codebook VQ-VAE Approach to High-Performance Neural
TTS [52.51848317549301]
高速なTTS合成のためのマルチステージマルチコードブック(MSMC)手法を提案する。
ベクトル量子化可変オートエンコーダ(VQ-VAE)に基づく特徴解析器を用いて,音声訓練データのメルスペクトルを符号化する。
合成において、ニューラルネットワークは予測されたSMCRを最終的な音声波形に変換する。
論文 参考訳(メタデータ) (2022-09-22T09:43:17Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
組込み畳み込みLSTM(E NeuralTM)と呼ばれる新しいLSTM変種を提案する。
ETMでは、異なる1次元の畳み込みの群がLSTM構造に埋め込まれている。
RUL推定のために広く用いられているいくつかのベンチマークデータセットに対する最先端のアプローチよりも,提案したEMMアプローチの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-10T08:34:20Z) - Multi-view Frequency LSTM: An Efficient Frontend for Automatic Speech
Recognition [4.753402561130792]
複数のFLSTMスタックの出力を異なるビューで組み合わせることで、シンプルで効率的な修正を行う。
本研究では,マルチビューFLSTM音響モデルにより,話者・音響環境の異なるシナリオに対して,単語誤り率(WER)が3~7%向上することを示す。
論文 参考訳(メタデータ) (2020-06-30T22:19:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。