論文の概要: The Morgan-Pitman Test of Equality of Variances and its Application to Machine Learning Model Evaluation and Selection
- arxiv url: http://arxiv.org/abs/2509.12185v1
- Date: Mon, 15 Sep 2025 17:47:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:23.437067
- Title: The Morgan-Pitman Test of Equality of Variances and its Application to Machine Learning Model Evaluation and Selection
- Title(参考訳): Morgan-Pitmanによる変数の等式判定と機械学習モデル評価と選択への応用
- Authors: Argimiro Arratia, Alejandra Cabaña, Ernesto Mordecki, Gerard Rovira-Parra,
- Abstract要約: 本稿では,誤差予測における分散の等価性を評価するための統計的テストを提案する。
テストは古典的なMorgan-Pitmanアプローチに基づいており、重い尾の分布や外れ値を持つデータに対して堅牢性を確保するための強化が組み込まれている。
- 参考スコア(独自算出の注目度): 39.146761527401424
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Model selection in non-linear models often prioritizes performance metrics over statistical tests, limiting the ability to account for sampling variability. We propose the use of a statistical test to assess the equality of variances in forecasting errors. The test builds upon the classic Morgan-Pitman approach, incorporating enhancements to ensure robustness against data with heavy-tailed distributions or outliers with high variance, plus a strategy to make residuals from machine learning models statistically independent. Through a series of simulations and real-world data applications, we demonstrate the test's effectiveness and practical utility, offering a reliable tool for model evaluation and selection in diverse contexts.
- Abstract(参考訳): 非線形モデルにおけるモデル選択は、しばしば統計テストよりもパフォーマンス指標を優先し、サンプリングのばらつきについて考慮する能力を制限する。
本稿では,誤差予測における分散の等価性を評価するための統計的テストを提案する。
このテストは、古典的なMorgan-Pitmanアプローチの上に構築され、重い尾の分布を持つデータや、高いばらつきを持つ外れ値を持つデータに対して堅牢性を確保するための強化と、統計的に独立した機械学習モデルからの残留物を作成する戦略が組み込まれている。
シミュレーションと実世界のデータアプリケーションを通じて、テストの有効性と実用性を実証し、多様な文脈におけるモデル評価と選択のための信頼性の高いツールを提供する。
関連論文リスト
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Context-Aware Testing: A New Paradigm for Model Testing with Large Language Models [49.06068319380296]
我々は,コンテキストを帰納バイアスとして用いて意味のあるモデル障害を探索するコンテキスト認識テスト(CAT)を導入する。
最初のCATシステムSMART Testingをインスタンス化し、大きな言語モデルを用いて、関連性があり、起こりうる失敗を仮説化します。
論文 参考訳(メタデータ) (2024-10-31T15:06:16Z) - Assessing Robustness of Machine Learning Models using Covariate Perturbations [0.6749750044497732]
本稿では,機械学習モデルの堅牢性を評価するための包括的フレームワークを提案する。
本研究では、ロバスト性の評価とモデル予測への影響を検討するために、様々な摂動戦略を検討する。
モデル間のロバスト性の比較、モデルの不安定性同定、モデルのロバスト性向上におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-02T14:41:36Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
オンラインコンテンツレコメンデーションや株式市場分析のようなディープラーニングアプリケーションでは、モデルは過去のデータを使って予測を行う。
入力ストリーム上の固定サイズのスライディングウインドウを使用するモデルに対して、ロバスト性証明を導出する。
私たちの保証は、ストリーム全体の平均モデルパフォーマンスを保ち、ストリームサイズに依存しないので、大きなデータストリームに適しています。
論文 参考訳(メタデータ) (2023-03-28T21:02:35Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
我々は、モデル選択に影響を及ぼす可能性のある重要な要因の観点から、複数のモデリング問題に対して異なるモデリングアプローチを体系的に比較する。
その結果,非凝集性予測性能が最も高いモデルでは,行動指標やアグリゲーションモードのシェアが低下することが示唆された。
MNLモデルは様々な状況において堅牢に機能するが、ML手法はWillingness to Payのような行動指標の推定を改善することができる。
論文 参考訳(メタデータ) (2023-01-11T11:10:32Z) - Statistical Model Criticism of Variational Auto-Encoders [15.005894753472894]
変分自動エンコーダ(VAE)の統計的評価のための枠組みを提案する。
我々は、手書き文字のイメージと英文のコーパスをモデル化する文脈において、このフレームワークの2つの例をテストする。
論文 参考訳(メタデータ) (2022-04-06T18:19:29Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。