論文の概要: Accelerating Privacy-Preserving Federated Learning in Large-Scale LEO Satellite Systems
- arxiv url: http://arxiv.org/abs/2509.12222v1
- Date: Fri, 05 Sep 2025 03:33:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-21 06:05:45.806529
- Title: Accelerating Privacy-Preserving Federated Learning in Large-Scale LEO Satellite Systems
- Title(参考訳): 大規模LEO衛星システムにおけるプライバシー保護フェデレーション学習の高速化
- Authors: Binquan Guo, Junteng Cao, Marie Siew, Binbin Chen, Tony Q. S. Quek, Zhu Han,
- Abstract要約: 大規模な低地球軌道(LEO)衛星システムは、高速かつ広範囲のデータ交換を可能にする能力によって、ますます価値が高まっている。
プライバシー上の懸念と規制上の制約のため、リモートクライアントで収集された生データを集中的に集約することはできない。
フェデレーション学習は、分散デバイス上でローカルモデルをトレーニングし、モデルパラメータのみを交換することで、プライバシ保護の代替手段を提供する。
本稿では,コミュニケーションリソースを動的に割り当て,フェデレート学習を高速化する,離散時間グラフに基づくオンデマンドスケジューリングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 57.692181589325116
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large-scale low-Earth-orbit (LEO) satellite systems are increasingly valued for their ability to enable rapid and wide-area data exchange, thereby facilitating the collaborative training of artificial intelligence (AI) models across geographically distributed regions. Due to privacy concerns and regulatory constraints, raw data collected at remote clients cannot be centrally aggregated, posing a major obstacle to traditional AI training methods. Federated learning offers a privacy-preserving alternative by training local models on distributed devices and exchanging only model parameters. However, the dynamic topology and limited bandwidth of satellite systems will hinder timely parameter aggregation and distribution, resulting in prolonged training times. To address this challenge, we investigate the problem of scheduling federated learning over satellite networks and identify key bottlenecks that impact the overall duration of each training round. We propose a discrete temporal graph-based on-demand scheduling framework that dynamically allocates communication resources to accelerate federated learning. Simulation results demonstrate that the proposed approach achieves significant performance gains over traditional statistical multiplexing-based model exchange strategies, reducing overall round times by 14.20% to 41.48%. Moreover, the acceleration effect becomes more pronounced for larger models and higher numbers of clients, highlighting the scalability of the proposed approach.
- Abstract(参考訳): 大規模低地球軌道(LEO)衛星システムは、地理的に分散した地域をまたいだ人工知能(AI)モデルの協調訓練を容易にし、迅速かつ広範囲のデータ交換を可能にする能力によって、ますます価値が高まっている。
プライバシー上の懸念と規制上の制約のため、リモートクライアントで収集された生データを集中的に集約することはできない。
フェデレーション学習は、分散デバイス上でローカルモデルをトレーニングし、モデルパラメータのみを交換することで、プライバシ保護の代替手段を提供する。
しかし、衛星システムの動的トポロジと限られた帯域幅は、タイムリーなパラメータアグリゲーションと分布を妨げ、訓練時間が長くなる。
この課題に対処するため、衛星ネットワーク上でのフェデレーション学習のスケジューリングの問題を調査し、各トレーニングラウンドの全体期間に影響を与える重要なボトルネックを特定する。
本稿では,コミュニケーションリソースを動的に割り当て,フェデレート学習を高速化する,離散時間グラフに基づくオンデマンドスケジューリングフレームワークを提案する。
シミュレーションの結果,提案手法は従来の統計多重化モデル交換戦略よりも大きな性能向上を実現し,ラウンドタイム全体の14.20%から41.48%に短縮した。
さらに、より大きなモデルとより多くのクライアントに対して加速効果がより顕著になり、提案手法のスケーラビリティが強調される。
関連論文リスト
- Quantized Rank Reduction: A Communications-Efficient Federated Learning Scheme for Network-Critical Applications [1.8416014644193066]
フェデレート・ラーニング(Federated Learning)とは、複数のデバイス(エージェント)が生データを交換することなく、協調的に共有モデルをトレーニングできる機械学習アプローチである。
このテクニックは、データをユーザデバイスにローカライズし、プライバシとセキュリティを確保すると同時に、各エージェントが自身のデータ上でモデルをトレーニングし、モデル更新のみを共有する。
エージェントと中央サーバ間のモデル更新の頻繁な交換のため、通信オーバーヘッドは重大な課題である。
ニューラルネットワーク勾配の低ランク近似と量子化を利用して,分散学習プロセスのネットワーク負荷を大幅に低減し,モデルへの影響を最小限に抑える通信効率のよいフェデレート学習手法を提案する。
論文 参考訳(メタデータ) (2025-07-15T10:37:59Z) - World Model-Based Learning for Long-Term Age of Information Minimization in Vehicular Networks [53.98633183204453]
本稿では,車載ネットワークにおけるパケット完全性認識情報(CAoI)の年齢を最小化するために,新しい世界モデルに基づく学習フレームワークを提案する。
mmWave V2X環境の動的モデルを共同で学習し、リンクスケジューリングの方法を学ぶための軌跡を想像するために使用する世界モデルフレームワークを提案する。
特に、長期的な政策は環境相互作用の代わりに、異なる想像軌道で学習される。
論文 参考訳(メタデータ) (2025-05-03T06:23:18Z) - Asynchronous Federated Learning: A Scalable Approach for Decentralized Machine Learning [0.9208007322096533]
フェデレートラーニング(FL)は、分散機械学習の強力なパラダイムとして登場し、生データを共有することなく、さまざまなクライアント間で協調的なモデルトレーニングを可能にする。
従来のFLアプローチは、同期クライアントのアップデートに依存しているため、スケーラビリティと効率の制限に直面することが多い。
本稿では、クライアントが独立して非同期にグローバルモデルを更新できる非同期フェデレートラーニング(AFL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-23T17:11:02Z) - Semi-decentralized Training of Spatio-Temporal Graph Neural Networks for Traffic Prediction [0.15978270011184256]
スマートモビリティ領域における時空間グラフ時間ニューラルネットワーク(ST-GNN)のための半分散トレーニング手法を探索し,適応する。
センサを複数のクラウドレットに近接してグループ化するシミュレーションフレームワークを実装した。
半分散的なセットアップは、パフォーマンスメトリクスの集中的なアプローチと同等であることを示す。
論文 参考訳(メタデータ) (2024-12-04T10:20:21Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - SPATL: Salient Parameter Aggregation and Transfer Learning for
Heterogeneous Clients in Federated Learning [3.5394650810262336]
効率的なフェデレーション学習は、エッジデバイス上でAIモデルをトレーニングしデプロイする上で重要な課題の1つだ。
フェデレーション学習におけるデータのプライバシの維持は、データの均一性、高価な通信コスト、限られたリソースなど、いくつかの課題を引き起こす。
本稿では,ローカルクライアントの深層強化学習に基づく有能なパラメータ選択エージェントを提案し,選択した有能なパラメータを中央サーバに集約する。
論文 参考訳(メタデータ) (2021-11-29T06:28:05Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
フェデレートラーニング(Federated Learning, FL)は、複数のノードが協調してディープラーニングモデルをトレーニングできる分散ラーニング方法論である。
本稿では,IoTヘテロジニアスシステムにおける階層FLの可能性について検討する。
複数のエッジノード上でのユーザ割り当てとリソース割り当てに最適化されたソリューションを提案する。
論文 参考訳(メタデータ) (2021-07-14T08:32:39Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。