論文の概要: Artificial Intelligence in Breast Cancer Care: Transforming Preoperative Planning and Patient Education with 3D Reconstruction
- arxiv url: http://arxiv.org/abs/2509.12242v1
- Date: Wed, 10 Sep 2025 16:52:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:52.640873
- Title: Artificial Intelligence in Breast Cancer Care: Transforming Preoperative Planning and Patient Education with 3D Reconstruction
- Title(参考訳): 乳がん治療における人工知能 : 3次元再構成による術前計画と患者教育の変容
- Authors: Mustafa Khanbhai, Giulia Di Nardo, Jun Ma, Vivienne Freitas, Caterina Masino, Ali Dolatabadi, Zhaoxun "Lorenz" Liu, Wey Leong, Wagner H. Souza, Amin Madani,
- Abstract要約: 術前計画には 様々なデータセットに 解剖学的構造を分割する 正確なアルゴリズムが必要です
U-Mambaを用いたHuman-in-the-loopアプローチのセグメンテーションは、撮像シナリオをまたいで一般化するように設計されている。
U-Mambaは全臓器で0.97、線維腺組織で0.96、T1強調画像で0.82と高い性能を示した。
- 参考スコア(独自算出の注目度): 1.5582012249641972
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Effective preoperative planning requires accurate algorithms for segmenting anatomical structures across diverse datasets, but traditional models struggle with generalization. This study presents a novel machine learning methodology to improve algorithm generalization for 3D anatomical reconstruction beyond breast cancer applications. We processed 120 retrospective breast MRIs (January 2018-June 2023) through three phases: anonymization and manual segmentation of T1-weighted and dynamic contrast-enhanced sequences; co-registration and segmentation of whole breast, fibroglandular tissue, and tumors; and 3D visualization using ITK-SNAP. A human-in-the-loop approach refined segmentations using U-Mamba, designed to generalize across imaging scenarios. Dice similarity coefficient assessed overlap between automated segmentation and ground truth. Clinical relevance was evaluated through clinician and patient interviews. U-Mamba showed strong performance with DSC values of 0.97 ($\pm$0.013) for whole organs, 0.96 ($\pm$0.024) for fibroglandular tissue, and 0.82 ($\pm$0.12) for tumors on T1-weighted images. The model generated accurate 3D reconstructions enabling visualization of complex anatomical features. Clinician interviews indicated improved planning, intraoperative navigation, and decision support. Integration of 3D visualization enhanced patient education, communication, and understanding. This human-in-the-loop machine learning approach successfully generalizes algorithms for 3D reconstruction and anatomical segmentation across patient datasets, offering enhanced visualization for clinicians, improved preoperative planning, and more effective patient education, facilitating shared decision-making and empowering informed patient choices across medical applications.
- Abstract(参考訳): 効果的な事前計画には、様々なデータセットにまたがって解剖学的構造を分割する正確なアルゴリズムが必要であるが、従来のモデルは一般化に苦慮している。
本研究は,乳がん以外の3次元解剖学的再構成のためのアルゴリズムの一般化を改善するための新しい機械学習手法を提案する。
胸部MRI120例(2018年1月~2023年6月)を,T1強調およびダイナミックコントラスト強調配列の匿名化と手動分割,全乳房,線維腺組織,腫瘍の共存・分節,ITK-SNAPを用いた3次元可視化の3段階に分けて処理した。
U-Mambaは、画像のシナリオをまたいで一般化するために設計された。
距離類似度係数は, 自動セグメンテーションと接地真実の重なりについて評価した。
臨床および患者へのインタビューを通じて臨床関連性を評価した。
U-Mambaは全臓器で0.97ドル(0.013ドル)、線維腺組織で0.96ドル(0.024ドル)、T1強調画像で0.82ドル(0.12ドル)の強い成績を示した。
モデルは複雑な解剖学的特徴の可視化を可能にする正確な3D再構成を生成する。
臨床検査では, 計画, 術中ナビゲーション, 意思決定支援が改善した。
3次元可視化の統合により、患者教育、コミュニケーション、理解が向上した。
このHuman-in-the-loopの機械学習アプローチは、患者のデータセット間での3D再構成と解剖学的セグメンテーションのアルゴリズムの一般化に成功し、臨床医の可視化の強化、術前計画の改善、より効果的な患者教育の提供、共有された意思決定の促進、医療アプリケーション間の情報的な患者選択の強化などを実現する。
関連論文リスト
- Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
経カテーテル大動脈弁置換術(TAVR)の術前計画のための医療ガイドラインを考察し,セマンティックセグメンテーションモデルを用いて支援できる課題を同定する。
まず, 細粒度のTAVR関連擬似ラベルを, 粗粒度の解剖学的情報から抽出し, セグメンテーションモデルを訓練し, スキャンでこれらの構造がどれだけよく見つかるかを定量化する。
論文 参考訳(メタデータ) (2025-07-22T13:24:45Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
完全に注釈付きCTデータセットは存在せず、すべての解剖学がトレーニングのために記述されている。
完全解剖を分割できる連続学習駆動CTモデルを提案する。
単体CT分割モデルCL-Netは, 臨床的に包括的に包括的に235個の粒状体解剖の集合を高精度に分割することができる。
論文 参考訳(メタデータ) (2025-03-16T23:55:02Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - Enhanced Knee Kinematics: Leveraging Deep Learning and Morphing Algorithms for 3D Implant Modeling [2.752817022620644]
本研究では, 人工膝の正確な3次元再構築のための機械学習アルゴリズムとモーフィング技術を用いた新しいアプローチを提案する。
畳み込みニューラルネットワークは、インプラントされたコンポーネントの大腿骨輪郭を自動的に分割するように訓練される。
移植膝関節のパーソナライズされた3次元モデルを生成する。
論文 参考訳(メタデータ) (2024-08-02T20:11:04Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
本研究では, 解剖学的特徴と病理学的情報を組み合わせた汎用的セグメンテーションモデルを構築し, 病理学的特徴のセグメンテーション精度を高めることを目的とする。
我々の解剖学・病理学交流(APEx)訓練では,ヒト解剖学の問合せ表現に結合特徴空間をデコードする問合せベースのセグメンテーション変換器を用いている。
これにより、FDG-PET-CTとChest X-Rayの病理分類タスクにおいて、強力なベースライン法に比べて最大3.3%のマージンで、ボード全体で最高の結果を報告できる。
論文 参考訳(メタデータ) (2024-07-08T11:44:15Z) - An Optimization Framework for Processing and Transfer Learning for the
Brain Tumor Segmentation [2.0886519175557368]
我々は脳腫瘍セグメント化のための3次元U-Netモデルに基づく最適化フレームワークを構築した。
このフレームワークには、さまざまな前処理や後処理技術、トランスファーラーニングなど、さまざまなテクニックが組み込まれている。
検証データセット上で、この多モード脳腫瘍セグメンテーションフレームワークは、それぞれチャレンジ1、2、3におけるDiceスコア平均0.79、0.72、0.74を達成する。
論文 参考訳(メタデータ) (2024-02-10T18:03:15Z) - Architecture Analysis and Benchmarking of 3D U-shaped Deep Learning Models for Thoracic Anatomical Segmentation [0.8897689150430447]
3次元U型モデルの変種に対する最初の系統的ベンチマーク研究を行う。
本研究では,異なる注意機構,解像度ステージ数,ネットワーク構成がセグメンテーション精度および計算複雑性に与える影響について検討した。
論文 参考訳(メタデータ) (2024-02-05T17:43:02Z) - A novel method to compute the contact surface area between an organ and cancer tissue [81.84413479369512]
CSA(contact surface area)とは、腫瘍と臓器の間の接触領域のこと。
我々は,腫瘍と臓器の3次元再構成を頼りに,CSAの正確な客観的評価を行う革新的な方法を提案する。
論文 参考訳(メタデータ) (2024-01-19T14:34:34Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
3つのコアアーキテクチャに基づく11種類のユニークなバリエーションからなるアンサンブル手法を提案する。
その結果,異なるアーキテクチャを組み合わせるアンサンブルアプローチが単一モデルより優れていることがわかった。
これらの結果は、脳腫瘍を正確に分類する上での、調整された深層学習技術の可能性を裏付けるものである。
論文 参考訳(メタデータ) (2023-08-14T15:34:22Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor
Segmentation [0.8397730500554047]
腎腫瘍と腎腫瘍をCT画像から自動的に分離するマルチスケール3D U-Net(MSS U-Net)を提案する。
我々のアーキテクチャは、3次元U-Netトレーニング効率を高めるために、深い監視と指数対数損失を組み合わせる。
このアーキテクチャは、KiTS19パブリックデータセットのデータを使用した最先端の作業と比較して、優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-04-17T08:25:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。