論文の概要: DoubleAgents: Exploring Mechanisms of Building Trust with Proactive AI
- arxiv url: http://arxiv.org/abs/2509.12626v1
- Date: Tue, 16 Sep 2025 03:43:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:52.86367
- Title: DoubleAgents: Exploring Mechanisms of Building Trust with Proactive AI
- Title(参考訳): DoubleAgents: プロアクティブAIによる信頼構築のメカニズムを探る
- Authors: Tao Long, Xuanming Zhang, Sitong Wang, Zhou Yu, Lydia B Chilton,
- Abstract要約: DoubleAgentsは、ユーザの介入を通じて透明性とコントロールを組み込むエージェント計画ツールである。
内蔵された応答シミュレーションは現実的なシナリオを生成し、ユーザーはリハーサルし、ポリシーを洗練し、信頼度を調整できる。
- 参考スコア(独自算出の注目度): 29.777890680647186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agentic workflows promise efficiency, but adoption hinges on whether people actually trust systems that act on their behalf. We present DoubleAgents, an agentic planning tool that embeds transparency and control through user intervention, value-reflecting policies, rich state visualizations, and uncertainty flagging for human coordination tasks. A built-in respondent simulation generates realistic scenarios, allowing users to rehearse, refine policies, and calibrate their reliance before live use. We evaluate DoubleAgents in a two-day lab study (n=10), two deployments (n=2), and a technical evaluation. Results show that participants initially hesitated to delegate but grew more reliant as they experienced transparency, control, and adaptive learning during simulated cases. Deployment results demonstrate DoubleAgents' real-world relevance and usefulness, showing that the effort required scaled appropriately with task complexity and contextual data. We contribute trust-by-design patterns and mechanisms for proactive AI -- consistency, controllability, and explainability -- along with simulation as a safe path to build and calibrate trust over time.
- Abstract(参考訳): エージェントワークフローは効率を約束するが、採用は人々が自分たちの代わりに行動するシステムを実際に信頼しているかどうかにかかっている。
ユーザの介入、価値を反映するポリシ、リッチな状態可視化、人間の協調作業に対する不確実性フラグ付けを通じて、透明性とコントロールを組み込むエージェント計画ツールであるDoubleAgentsを紹介します。
内蔵された応答シミュレーションは現実的なシナリオを生成し、ユーザーはライブ使用前にリハーサルし、ポリシーを洗練し、信頼度を調整できる。
2日間のラボスタディ(n=10),2回のデプロイ(n=2),技術評価においてDoubleAgentsを評価した。
その結果、参加者は最初は委任をためらったが、シミュレートされたケースにおいて透明性、制御、適応学習を経験し、より信頼された。
デプロイ結果は、DoubleAgentsの実際の妥当性と有用性を示し、必要な労力がタスクの複雑さとコンテキストデータと共に適切にスケールされたことを示している。
私たちは、プロアクティブなAI -- 一貫性、制御可能性、説明可能性 -- のための信頼バイ設計パターンとメカニズムと、時間の経過とともに信頼を構築し、キャリブレーションするための安全なパスとしてのシミュレーションに貢献します。
関連論文リスト
- Agent4FaceForgery: Multi-Agent LLM Framework for Realistic Face Forgery Detection [108.5042835056188]
この作業では,2つの基本的な問題に対処するため,Agent4FaceForgeryを導入している。
人間の偽造の多様な意図と反復的なプロセスを捉える方法。
ソーシャルメディアの偽造に付随する複雑な、しばしば敵対的な、テキストと画像のインタラクションをモデル化する方法。
論文 参考訳(メタデータ) (2025-09-16T01:05:01Z) - Co-Investigator AI: The Rise of Agentic AI for Smarter, Trustworthy AML Compliance Narratives [2.7295959384567356]
Co-Investigator AIは、SAR(Suspicious Activity Reports)の作成に最適化されたエージェントフレームワークであり、従来の方法よりも大幅に高速で精度が高い。
我々は、SARの草案作成を効率化し、物語を規制上の期待と一致させ、コンプライアンスチームが高次の分析作業に集中できるようにする能力を示します。
論文 参考訳(メタデータ) (2025-09-10T08:16:04Z) - Get Experience from Practice: LLM Agents with Record & Replay [16.179801770737892]
本稿では,AIエージェントフレームワークに古典的なレコード再生機構を導入する,Agent Record & Replay(Agent Record & Replay)と呼ばれる新しいパラダイムを提案する。
本稿では,AgentRRにおけるマルチレベル体験抽象化手法とチェック関数機構について述べる。
さらに,AgentRRの複数のアプリケーションモードについて検討し,ユーザ記録タスクのデモ,大規模モデルコラボレーション,プライバシ対応エージェントの実行などを検討した。
論文 参考訳(メタデータ) (2025-05-23T10:33:14Z) - SOPBench: Evaluating Language Agents at Following Standard Operating Procedures and Constraints [59.645885492637845]
SOPBenchは、各サービス固有のSOPコードプログラムを実行可能な関数の有向グラフに変換する評価パイプラインである。
提案手法では,各サービス固有のSOPコードプログラムを実行可能関数の有向グラフに変換し,自然言語SOP記述に基づいてこれらの関数を呼び出しなければならない。
我々は18の先行モデルを評価し、上位モデルでさえタスクが困難であることを示す。
論文 参考訳(メタデータ) (2025-03-11T17:53:02Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - How Far Are LLMs from Believable AI? A Benchmark for Evaluating the Believability of Human Behavior Simulation [46.42384207122049]
我々は,人間の振る舞いをシミュレートする際の大規模言語モデル (LLM) の信頼性を評価するために SimulateBench を設計する。
SimulateBenchに基づいて、文字をシミュレートする際、広く使われている10個のLLMの性能を評価する。
論文 参考訳(メタデータ) (2023-12-28T16:51:11Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - On Assessing The Safety of Reinforcement Learning algorithms Using
Formal Methods [6.2822673562306655]
敵の訓練、敵の検知、堅牢な学習といった安全メカニズムは、エージェントが配備されるすべての障害に常に適応するとは限らない。
したがって,エージェントが直面する学習課題に適応した新しいソリューションを提案する必要がある。
我々は、対向的摂動に直面した際のエージェントのポリシーを改善するために、報酬形成とQ-ラーニングアルゴリズムを防御機構として使用する。
論文 参考訳(メタデータ) (2021-11-08T23:08:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。