論文の概要: Spatio-temporal DeepKriging in PyTorch: A Supplementary Application to Precipitation Data for Interpolation and Probabilistic Forecasting
- arxiv url: http://arxiv.org/abs/2509.12708v1
- Date: Tue, 16 Sep 2025 05:58:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:52.911376
- Title: Spatio-temporal DeepKriging in PyTorch: A Supplementary Application to Precipitation Data for Interpolation and Probabilistic Forecasting
- Title(参考訳): PyTorchにおける時空間深絞り:補間・確率予測のための沈殿データへの補助的応用
- Authors: Pratik Nag,
- Abstract要約: ヨーロッパにおける降水データの解析を行い、ロバストネスと予測応用に焦点を当てた。
SSTDの時間的DeepKrigingフレームワークは、これらの目的を達成するためにPyTorchプラットフォームを使用して実装されている。
本手法の有効性は, 日中降水量測定における広範囲な評価によって実証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A detailed analysis of precipitation data over Europe is presented, with a focus on interpolation and forecasting applications. A Spatio-temporal DeepKriging (STDK) framework has been implemented using the PyTorch platform to achieve these objectives. The proposed model is capable of handling spatio-temporal irregularities while generating high-resolution interpolations and multi-step forecasts. Reproducible code modules have been developed as standalone PyTorch implementations for the interpolation\footnote[2]{Interpolation - https://github.com/pratiknag/Spatio-temporalDeepKriging-Pytorch.git} and forecasting\footnote[3]{Forecasting - https://github.com/pratiknag/pytorch-convlstm.git}, facilitating broader application to similar climate datasets. The effectiveness of this approach is demonstrated through extensive evaluation on daily precipitation measurements, highlighting predictive performance and robustness.
- Abstract(参考訳): ヨーロッパにおける降水データを詳細に分析し,補間と予測に焦点をあてた。
これらの目的を達成するために、PyTorchプラットフォームを使用して時空間DeepKriging(STDK)フレームワークが実装されている。
提案モデルは高分解能補間と多段階予測を生成しながら時空間不規則性を扱うことができる。
Reproducible code module は Interpolation\footnote[2]{Interpolation - https://github.com/pratiknag/Spatio-temporalDeepKriging-Pytorch.git} と forecasting\footnote[3]{Forecasting - https://github.com/pratiknag/pytorch-convlstm.git} のスタンドアロン実装として開発された。
本手法の有効性は, 日中降水量測定を広範囲に評価し, 予測性能とロバスト性を明らかにすることによって実証される。
関連論文リスト
- LaDCast: A Latent Diffusion Model for Medium-Range Ensemble Weather Forecasting [1.2277343096128712]
我々は中距離アンサンブル予測のための最初のグローバル潜在拡散フレームワークであるLaDCastを紹介する。
LaDCastは学習された潜在空間で、時間ごとのアンサンブル予測を生成する。
LaDCastはEuropean Centre for Medium-Range Forecast IFS-ENSに近い決定的および確率的スキルを達成している。
論文 参考訳(メタデータ) (2025-06-10T19:17:14Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Spatio-temporal DeepKriging for Interpolation and Probabilistic
Forecasting [2.494500339152185]
本稿では、時間・時間・予測のためのディープニューラルネットワーク(DNN)に基づく2段階モデルを提案する。
我々は、確率予測を提供するために、量子ベースの損失関数をプロセスに導入する。
複雑な時間過程の大規模予測に適している。
論文 参考訳(メタデータ) (2023-06-20T11:51:44Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - TSFEDL: A Python Library for Time Series Spatio-Temporal Feature
Extraction and Prediction using Deep Learning (with Appendices on Detailed
Network Architectures and Experimental Cases of Study) [9.445070013080601]
TSFEライブラリは、AGPLv3ライセンスの下でflow+KerasとPyTorchモジュールのセット上に構築されている。
この提案に含まれるアーキテクチャのパフォーマンス検証は、このPythonパッケージの有用性を確認している。
論文 参考訳(メタデータ) (2022-06-07T10:58:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。