論文の概要: WebSailor-V2: Bridging the Chasm to Proprietary Agents via Synthetic Data and Scalable Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2509.13305v1
- Date: Tue, 16 Sep 2025 17:57:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:53.217592
- Title: WebSailor-V2: Bridging the Chasm to Proprietary Agents via Synthetic Data and Scalable Reinforcement Learning
- Title(参考訳): WebSailor-V2: シンセティックデータとスケーラブル強化学習によるプロプライエタリエージェントへのチャット
- Authors: Kuan Li, Zhongwang Zhang, Huifeng Yin, Rui Ye, Yida Zhao, Liwen Zhang, Litu Ou, Dingchu Zhang, Xixi Wu, Jialong Wu, Xinyu Wang, Zile Qiao, Zhen Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou,
- Abstract要約: WebSailorは、この重要な機能を組み込むように設計された、完全なポストトレーニング方法論である。
我々のアプローチは、構造化サンプリングと情報難読化によって、新しい、不確実なタスクを生成することである。
WebSailorは複雑な情報検索タスクにおいて、すべてのオープンソースエージェントを著しく上回る。
- 参考スコア(独自算出の注目度): 73.91893534088798
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all open-source agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
- Abstract(参考訳): 人間の認知的限界を超越することは、LLMトレーニングにおける重要なフロンティアである。
DeepResearchのようなプロプライエタリなエージェントシステムは、BrowseCompのような非常に複雑な情報検索ベンチマークで超人的な能力を実証している。
彼らの成功は、オープンソースモデルに欠けている洗練された推論パターン、つまり、膨大な情報ランドスケープをナビゲートする際の極端な不確実性を体系的に低減できる能力に基づいていると仮定する。
この知見に基づいて、私たちは、この重要な能力を具現化するように設計された、完全なポストトレーニング方法論であるWebSailorを紹介します。
提案手法では, 構造化サンプリングと情報難読化, RFTコールドスタート, および効率的なエージェントRLトレーニングアルゴリズムDuplicating Smpling Policy Optimization (DUPO) を用いて, 新規で不確実なタスクを生成する。
この統合パイプラインにより、WebSailorは複雑な情報検索タスクにおいてすべてのオープンソースエージェントを著しく上回り、プロプライエタリなエージェントのパフォーマンスにマッチし、能力のギャップを埋める。
関連論文リスト
- WebWatcher: Breaking New Frontier of Vision-Language Deep Research Agent [68.3311163530321]
Deep ResearchのようなWebエージェントは認知能力を示しており、高度に難解な情報検索問題を解決することができる。
このようなエージェントは知覚、論理、知識においてより強力な推論能力を必要とするため、マルチモーダルディープリサーチは非常に困難である。
本稿では,視覚言語推論機能を備えた多モードディープリサーチエージェントであるWebWatcherを紹介する。
論文 参考訳(メタデータ) (2025-08-07T18:03:50Z) - WebSailor: Navigating Super-human Reasoning for Web Agent [72.5231321118689]
WebSailorは、この重要な機能を組み込むように設計された、完全なポストトレーニング方法論である。
我々のアプローチは、構造化サンプリングと情報難読化によって、新しい、不確実なタスクを生成することである。
WebSailorは複雑な情報検索タスクにおいて、すべてのオープンソースエージェントを著しく上回っている。
論文 参考訳(メタデータ) (2025-07-03T12:59:07Z) - LaMDAgent: An Autonomous Framework for Post-Training Pipeline Optimization via LLM Agents [3.6117068575553595]
トレーニング後の完全なパイプラインを自律的に構築し、最適化するフレームワークであるLaMDAgentを紹介します。
LaMDAgentは、ツールの使用精度を9.0ポイント向上し、命令追従機能を保持する。
従来の人間主導の探査で見落とされがちな効果的なポストトレーニング戦略を明らかにする。
論文 参考訳(メタデータ) (2025-05-28T04:30:51Z) - SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis [89.99161034065614]
Retrieval-augmented Generation (RAG) システムは複雑なディープ検索シナリオにおいて高度な大規模言語モデル(LLM)を持つ。
既存のアプローチでは、高品質なトレーニングトラジェクトリが欠如し、分散ミスマッチに苦しむ、重要な制限に直面しています。
本稿では,複雑なトレーニングパラダイムではなく,戦略的データエンジニアリングによるギャップを埋めるフレームワークであるSimpleDeepSearcherを紹介する。
論文 参考訳(メタデータ) (2025-05-22T16:05:02Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents [44.34340798542]
大きな言語モデル(LLM)は、複雑な推論を必要とする自然言語タスクにおいて顕著な能力を示している。
静的データセットに対する従来の教師付き事前トレーニングは、自律的なエージェント機能を実現するには不十分である。
本稿では,モンテカルロ木探索(MCTS)を自己批判機構と組み合わせ,エージェント間相互作用を反復的に微調整するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T20:52:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。