論文の概要: A Generalization of CLAP from 3D Localization to Image Processing, A Connection With RANSAC & Hough Transforms
- arxiv url: http://arxiv.org/abs/2509.13605v1
- Date: Wed, 17 Sep 2025 00:29:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 18:41:50.676457
- Title: A Generalization of CLAP from 3D Localization to Image Processing, A Connection With RANSAC & Hough Transforms
- Title(参考訳): 3次元局所化から画像処理へのCLAPの一般化 -RANSAC&Hough変換との接続-
- Authors: Ruochen Hou, Gabriel I. Fernandez, Alex Xu, Dennis W. Hong,
- Abstract要約: これまでの研究では,CLAPと呼ばれる2Dローカライゼーションアルゴリズムを導入し,Across $n$ Possibilities をローカライズした。
本稿では,CLAPを2次元ローカライゼーションを超えて,特に3次元ローカライゼーションと画像縫合に拡張する。
- 参考スコア(独自算出の注目度): 5.16597442299101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In previous work, we introduced a 2D localization algorithm called CLAP, Clustering to Localize Across $n$ Possibilities, which was used during our championship win in RoboCup 2024, an international autonomous humanoid soccer competition. CLAP is particularly recognized for its robustness against outliers, where clustering is employed to suppress noise and mitigate against erroneous feature matches. This clustering-based strategy provides an alternative to traditional outlier rejection schemes such as RANSAC, in which candidates are validated by reprojection error across all data points. In this paper, CLAP is extended to a more general framework beyond 2D localization, specifically to 3D localization and image stitching. We also show how CLAP, RANSAC, and Hough transforms are related. The generalization of CLAP is widely applicable to many different fields and can be a useful tool to deal with noise and uncertainty.
- Abstract(参考訳): 前回大会では,国際自律型ヒューマノイドサッカー大会であるRoboCup 2024で優勝した,CLAP(Clustering to Localize Across $n$ Possibilities)という2Dローカライゼーションアルゴリズムを導入した。
CLAPは特に、異常な特徴マッチに対するノイズ抑制と緩和のためにクラスタリングが使用されるオフレーヤに対する堅牢性で認識されている。
このクラスタリングベースの戦略は、RANSACのような従来の外れ値拒否方式に代わるもので、すべてのデータポイントにまたがる再射誤差によって候補が検証される。
本稿では,CLAPを2次元ローカライゼーションを超えて,特に3次元ローカライゼーションと画像縫合に拡張する。
また,CLAP,RANSAC,Hough変換の関連性を示す。
CLAPの一般化は多くの異なる分野に適用でき、ノイズや不確実性に対処するのに有用なツールである。
関連論文リスト
- Recover and Match: Open-Vocabulary Multi-Label Recognition through Knowledge-Constrained Optimal Transport [45.866011150937425]
上記の問題に効果的に対処する新しいフレームワークであるRAM(Recover And Match)を紹介します。
RAMは3つの異なるドメインのさまざまなデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-19T15:33:44Z) - Federated Learning with Bilateral Curation for Partially Class-Disjoint Data [47.55180390473258]
部分的なクラス分離データ(PCDD)は、一般的なが未探索のデータ生成であり、フェデレートされたアルゴリズムの性能に深刻な挑戦をする。
我々はFedGELAと呼ばれる新しい手法を提案し、ETFは局所的に個人分布に適応しながら、単純なETFとしてグローバルに固定されている。
我々は、FedGELAが有望なパフォーマンスを達成することを示すために、さまざまなデータセットに関する広範な実験を行います。
論文 参考訳(メタデータ) (2024-05-29T10:34:44Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
画像レベルの弱い教師付きセグメンテーション(WSSS)は、トレーニング中にセグメンテーションマスクを代理することで、通常膨大なデータアノテーションコストを削減する。
本研究は,GAPの代替となる重要サンプリングと特徴類似性損失という,CAMを改善するための2つの手法に基づく。
複数の独立二項問題の後部二項問題に基づいて両手法を再構成する。
パフォーマンスが向上し、より一般的なものになり、事実上あらゆるWSSSメソッドを増強できるアドオンメソッドが出来上がります。
論文 参考訳(メタデータ) (2023-04-05T17:43:57Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
FS-FGR (Few-shot Fine-fine Recognition) は、限られたサンプルの助けを借りて、新しいきめ細かなカテゴリを認識することを目的としている。
本研究では,背景アクティベーション抑制 (BAS) モジュール,フォアグラウンドオブジェクトアライメント (FOA) モジュール,および局所的局所的(L2L) 類似度測定器からなる2段階の背景アライメントとフォアグラウンドアライメントフレームワークを提案する。
複数のベンチマークで行った実験により,提案手法は既存の最先端技術よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-10-04T07:54:40Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Denoised Non-Local Neural Network for Semantic Segmentation [18.84185406522064]
クラス間ノイズとクラス内ノイズをそれぞれ除去するデノナイズド非ローカネットワーク(デノナイズドNL)を提案する。
提案したNLは,都市景観における83.5%,46.69% mIoU,ADE20Kの最先端性能を達成できる。
論文 参考訳(メタデータ) (2021-10-27T06:16:31Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
弱教師付きローカライゼーションは、画像レベルの監督のみを使用して対象対象領域を見つけることを目的としている。
我々は,より正確な物体位置を学習するために,異なる物体間の画素レベルの類似性を活用することを提案する。
ILSVRC検証セット上でトップ1のローカライズ誤差率45.17%を達成する。
論文 参考訳(メタデータ) (2020-08-12T04:14:11Z) - Generalized Focal Loss: Learning Qualified and Distributed Bounding
Boxes for Dense Object Detection [85.53263670166304]
一段検出器は基本的に、物体検出を密度の高い分類と位置化として定式化する。
1段検出器の最近の傾向は、局所化の質を推定するために個別の予測分岐を導入することである。
本稿では, 上記の3つの基本要素, 品質推定, 分類, ローカライゼーションについて述べる。
論文 参考訳(メタデータ) (2020-06-08T07:24:33Z) - Contradictory Structure Learning for Semi-supervised Domain Adaptation [67.89665267469053]
現在の逆順応法は、クロスドメインの特徴を整列させようとする。
1)条件分布ミスマッチ、2)決定境界のソース領域へのバイアス。
本稿では,対向構造の学習を統一することで,半教師付きドメイン適応のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-06T22:58:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。