論文の概要: ParaAegis: Parallel Protection for Flexible Privacy-preserved Federated Learning
- arxiv url: http://arxiv.org/abs/2509.13739v1
- Date: Wed, 17 Sep 2025 06:45:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 18:41:50.744678
- Title: ParaAegis: Parallel Protection for Flexible Privacy-preserved Federated Learning
- Title(参考訳): ParaAegis: フレキシブルなプライバシ保護フェデレーション学習のための並列保護
- Authors: Zihou Wu, Yuecheng Li, Tianchi Liao, Jian Lou, Chuan Chen,
- Abstract要約: 差分プライバシー(DP)や同型暗号化(HE)といった既存の保護メカニズムは、厳格なトレードオフを強制する。
ParaAegisは、実践者がプライバシ・ユーティリティ・効率バランスを柔軟に制御できるように設計された並列保護フレームワークである。
- 参考スコア(独自算出の注目度): 13.49035249752613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) faces a critical dilemma: existing protection mechanisms like differential privacy (DP) and homomorphic encryption (HE) enforce a rigid trade-off, forcing a choice between model utility and computational efficiency. This lack of flexibility hinders the practical implementation. To address this, we introduce ParaAegis, a parallel protection framework designed to give practitioners flexible control over the privacy-utility-efficiency balance. Our core innovation is a strategic model partitioning scheme. By applying lightweight DP to the less critical, low norm portion of the model while protecting the remainder with HE, we create a tunable system. A distributed voting mechanism ensures consensus on this partitioning. Theoretical analysis confirms the adjustments between efficiency and utility with the same privacy. Crucially, the experimental results demonstrate that by adjusting the hyperparameters, our method enables flexible prioritization between model accuracy and training time.
- Abstract(参考訳): 差分プライバシー(DP)や同型暗号化(HE)のような既存の保護メカニズムは、厳格なトレードオフを強制し、モデルユーティリティと計算効率の選択を強制する。
この柔軟性の欠如は、実践的な実装を妨げる。
この問題を解決するために、ParaAegisを紹介します。これは、実践者がプライバシーと実用効率のバランスを柔軟に制御できるように設計された並列保護フレームワークです。
私たちの中心となるイノベーションは、戦略的モデルの分割スキームです。
より重要でない低ノルム部分に軽量DPを適用し、残りをHEで保護することにより、チューニング可能なシステムを構築する。
分散投票メカニズムは、この分割に関してコンセンサスを保証する。
理論的分析は、効率とユーティリティの調整を同一のプライバシーで確認する。
実験結果から,ハイパーパラメータの調整により,モデル精度とトレーニング時間とのフレキシブルな優先順位付けが可能となった。
関連論文リスト
- Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
本稿では,Large Language Model (LLM) 後の学習において,SFT(Supervised Fine-Tuning) と優先学習を統合した理論フレームワークを提案する。
そこで本研究では,学習率の簡易かつ効果的な削減手法を提案する。
論文 参考訳(メタデータ) (2025-06-15T05:42:29Z) - Multi-Objective Optimization for Privacy-Utility Balance in Differentially Private Federated Learning [12.278668095136098]
フェデレートラーニング(FL)は、生データを共有せずに、分散クライアント間で協調的なモデルトレーニングを可能にする。
本稿では,多目的最適化フレームワークを用いて動的にクリッピング規範を調整する適応型クリッピング機構を提案する。
以上の結果から,適応的クリッピングは固定クリッピングベースラインを一貫して上回り,同一のプライバシー制約下での精度の向上を実現している。
論文 参考訳(メタデータ) (2025-03-27T04:57:05Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence [22.946928984205588]
ディファレンシャル・プライベート・フェデレーション・ラーニング(DP-FL)は協調モデルトレーニングにおいて有望な手法である。
本稿では,任意のランダム化機構を普遍的に調和させる最初のDP-FLフレームワーク(UDP-FL)を提案する。
その結果,UDP-FLは異なる推論攻撃に対して強い耐性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-20T00:11:59Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。