論文の概要: Data-Efficient Spectral Classification of Hyperspectral Data Using MiniROCKET and HDC-MiniROCKET
- arxiv url: http://arxiv.org/abs/2509.13809v1
- Date: Wed, 17 Sep 2025 08:22:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 18:41:50.786576
- Title: Data-Efficient Spectral Classification of Hyperspectral Data Using MiniROCKET and HDC-MiniROCKET
- Title(参考訳): MiniROCKETとHDC-MiniROCKETを用いたハイパースペクトルデータの効率的なスペクトル分類
- Authors: Nick Theisen, Kenny Schlegel, Dietrich Paulus, Peer Neubert,
- Abstract要約: スペクトル分類は、農業からリモートセンシングまで、多くの分野で使われている。
スペクトル分類にはMiniROCKETとHDC-MiniROCKETが用いられる。
- 参考スコア(独自算出の注目度): 1.6449390849183356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classification of pixel spectra of hyperspectral images, i.e. spectral classification, is used in many fields ranging from agricultural, over medical to remote sensing applications and is currently also expanding to areas such as autonomous driving. Even though for full hyperspectral images the best-performing methods exploit spatial-spectral information, performing classification solely on spectral information has its own advantages, e.g. smaller model size and thus less data required for training. Moreover, spectral information is complementary to spatial information and improvements on either part can be used to improve spatial-spectral approaches in the future. Recently, 1D-Justo-LiuNet was proposed as a particularly efficient model with very few parameters, which currently defines the state of the art in spectral classification. However, we show that with limited training data the model performance deteriorates. Therefore, we investigate MiniROCKET and HDC-MiniROCKET for spectral classification to mitigate that problem. The model extracts well-engineered features without trainable parameters in the feature extraction part and is therefore less vulnerable to limited training data. We show that even though MiniROCKET has more parameters it outperforms 1D-Justo-LiuNet in limited data scenarios and is mostly on par with it in the general case
- Abstract(参考訳): ハイパースペクトル画像のピクセルスペクトルの分類(スペクトル分類)は、農業、医療、リモートセンシングなど多くの分野で使われており、現在は自動運転などの分野にも拡張されている。
フルハイパースペクトル画像では空間スペクトル情報を利用するのが最適であるが、スペクトル情報のみに分類を行うには、モデルサイズが小さく、訓練に必要なデータが少ないなど、独自の利点がある。
さらに、スペクトル情報は空間情報と相補的であり、将来の空間スペクトルアプローチを改善するためにどちらの部分も改善することができる。
近年、1D-Justo-LiuNetは、非常に少ないパラメータを持つ特に効率的なモデルとして提案され、現在、スペクトル分類における最先端技術を定義している。
しかし,訓練データに制限があるため,モデルの性能は低下することがわかった。
そこで, この問題を緩和するために, スペクトル分類のためのMiniROCKETとHDC-MiniROCKETについて検討する。
このモデルは、特徴抽出部でトレーニング可能なパラメータを使わずに、よく設計された特徴を抽出するので、限られた訓練データに対して脆弱ではない。
我々は、MiniROCKETがより多くのパラメータを持つにもかかわらず、限られたデータシナリオでは1D-Justo-LiuNetより優れており、一般的にはそれと同程度であることを示した。
関連論文リスト
- Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
本稿では,分類精度を高めつつ,データ量を大幅に削減する新しいフレームワークを提案する。
本モデルでは,空間特徴解析のための特殊ブロックによって補完されるスペクトル特徴を効率よく抽出するために,双方向逆畳み込みニューラルネットワーク(CNN)を用いる。
論文 参考訳(メタデータ) (2024-11-29T23:32:26Z) - Spectral Image Data Fusion for Multisource Data Augmentation [44.99833362998488]
マルチスペクトル画像やハイパースペクトル画像は、リモートセンシング、天文学的イメージング、精密農業など、さまざまな研究分野で人気が高まっている。
機械学習タスクを実行できる無料データの量は比較的少ない。
スペクトル画像の領域で開発された人工知能モデルは、固定されたスペクトルシグネチャを持つ入力画像を必要とする。
論文 参考訳(メタデータ) (2024-04-05T13:40:18Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
SpectralGPTという名前のユニバーサルRS基盤モデルは、新しい3D生成事前学習変換器(GPT)を用いてスペクトルRS画像を処理するために構築されている。
既存の基礎モデルと比較して、SpectralGPTは、様々なサイズ、解像度、時系列、領域をプログレッシブトレーニング形式で対応し、広範なRSビッグデータのフル活用を可能にする。
我々の評価では、事前訓練されたスペクトルGPTモデルによる顕著な性能向上が強調され、地球科学分野におけるスペクトルRSビッグデータ応用の進展に有意な可能性を示唆している。
論文 参考訳(メタデータ) (2023-11-13T07:09:30Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
我々は拡散と変圧器技術を組み合わせたDiffSpectralNetと呼ばれる新しいネットワークを提案する。
まず,拡散モデルに基づく教師なし学習フレームワークを用いて,高レベル・低レベルのスペクトル空間的特徴を抽出する。
この拡散法はスペクトル空間の特徴を多様かつ有意義に抽出し,HSI分類の改善につながる。
論文 参考訳(メタデータ) (2023-10-29T15:26:37Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - A distribution-dependent Mumford-Shah model for unsupervised
hyperspectral image segmentation [3.2116198597240846]
本稿では、新しい教師なしハイパースペクトルセグメンテーションフレームワークを提案する。
これは、MNF(Minimum Noise Fraction)変換によって、デノゲーションと次元の低減ステップから始まる。
我々は、高スペクトルデータの課題に対処するために、新しい頑健な分布依存型インジケータ機能を備えたMS関数を実装した。
論文 参考訳(メタデータ) (2022-03-28T19:57:14Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z) - Performance Analysis of Semi-supervised Learning in the Small-data
Regime using VAEs [0.261072980439312]
そこで本研究では,データ空間の潜在空間表現を事前学習した既存のアルゴリズムを用いて,データ構造入力の低次元の特徴を抽出する手法を提案する。
微調整された潜在空間は、分類に有用な一定の重みを与える。
ここでは、半教師付き学習において、遅延空間サイズが異なるVAEアルゴリズムの性能解析について述べる。
論文 参考訳(メタデータ) (2020-02-26T16:19:54Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。