論文の概要: CrowdAgent: Multi-Agent Managed Multi-Source Annotation System
- arxiv url: http://arxiv.org/abs/2509.14030v1
- Date: Wed, 17 Sep 2025 14:31:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 18:41:50.87659
- Title: CrowdAgent: Multi-Agent Managed Multi-Source Annotation System
- Title(参考訳): CrowdAgent:マルチエージェント管理マルチソースアノテーションシステム
- Authors: Maosheng Qin, Renyu Zhu, Mingxuan Xia, Chenkai Chen, Zhen Zhu, Minmin Lin, Junbo Zhao, Lu Xu, Changjie Fan, Runze Wu, Haobo Wang,
- Abstract要約: 本稿では、タスク割り当て、データアノテーション、品質/コスト管理を統合することで、エンドツーエンドのプロセス制御を提供するマルチエージェントシステムであるCrowdAgentを紹介する。
各種多モード分類タスクの広範囲な実験を通じて、CrowdAgentの有効性を実証する。
- 参考スコア(独自算出の注目度): 35.475630022512185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-quality annotated data is a cornerstone of modern Natural Language Processing (NLP). While recent methods begin to leverage diverse annotation sources-including Large Language Models (LLMs), Small Language Models (SLMs), and human experts-they often focus narrowly on the labeling step itself. A critical gap remains in the holistic process control required to manage these sources dynamically, addressing complex scheduling and quality-cost trade-offs in a unified manner. Inspired by real-world crowdsourcing companies, we introduce CrowdAgent, a multi-agent system that provides end-to-end process control by integrating task assignment, data annotation, and quality/cost management. It implements a novel methodology that rationally assigns tasks, enabling LLMs, SLMs, and human experts to advance synergistically in a collaborative annotation workflow. We demonstrate the effectiveness of CrowdAgent through extensive experiments on six diverse multimodal classification tasks. The source code and video demo are available at https://github.com/QMMMS/CrowdAgent.
- Abstract(参考訳): 高品質な注釈付きデータは、現代の自然言語処理(NLP)の基盤となっている。
近年の手法では、LLM(Large Language Models)やSmall Language Models(SLM)といった多種多様なアノテーションソースの利用が始まっている。
これらのソースを動的に管理するために必要な全体的プロセス制御において重要なギャップが残っており、複雑なスケジューリングと品質コストのトレードオフを統一的に解決している。
実世界のクラウドソーシング企業から着想を得たCrowdAgentは、タスク割り当て、データアノテーション、品質/コスト管理を統合することで、エンドツーエンドのプロセス制御を提供するマルチエージェントシステムである。
タスクを合理的に割り当てる新しい方法論を実装し、LLM、SLM、人間の専門家が協調的なアノテーションワークフローで相乗的に前進できるようにしている。
各種多モード分類タスクの広範囲な実験を通じて、CrowdAgentの有効性を実証する。
ソースコードとビデオのデモはhttps://github.com/QMMMS/CrowdAgent.comで公開されている。
関連論文リスト
- Multi-Agent Data Visualization and Narrative Generation [1.935127147843886]
データ分析ワークフローを自動化する軽量なマルチエージェントシステムを提案する。
提案手法は,ハイブリッドマルチエージェントアーキテクチャと決定論的コンポーネントを組み合わせることで,重要な論理を戦略的に外部化する。
このシステムは、完全な再生なしに外科的修正を可能にする、粒度の細かいモジュラー出力を提供する。
論文 参考訳(メタデータ) (2025-08-30T12:39:55Z) - Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RL [41.847359443133776]
CoA(Chain-of-Agents)は、大規模言語モデル(LLM)推論の新しいパラダイムであり、ネイティブなエンドツーエンドの複雑な問題解決を可能にする。
我々は, エージェント制御微調整のための多エージェント蒸留フレームワークを導入し, 最先端のマルチエージェントシステムをチェーン・オブ・エージェント・トラジェクトリに蒸留する。
次に、検証可能なエージェントタスクに対するエージェント強化学習を用いて、チェーン・オブ・エージェントの問題解決におけるモデルの能力をさらに向上する。
論文 参考訳(メタデータ) (2025-08-06T17:01:02Z) - MisoDICE: Multi-Agent Imitation from Unlabeled Mixed-Quality Demonstrations [5.4482836906033585]
実演が混在する多エージェント環境下でのオフライン模倣学習(IL)について検討した。
提案手法は,軌道ラベリングとマルチエージェント模倣学習の2段階からなる。
我々はこれらのラベルを利用してロバストなポリシーを学習する新しいマルチエージェントILアルゴリズムであるMisoDICEを紹介する。
論文 参考訳(メタデータ) (2025-05-24T08:43:42Z) - EMMOE: A Comprehensive Benchmark for Embodied Mobile Manipulation in Open Environments [11.97783742296183]
Embodied Mobile Manipulation in Open Environmentsは、エージェントがユーザーの指示を解釈し、連続した空間で長時間の日常的なタスクを実行する必要があるベンチマークである。
Open EnvironmentsにおけるEmbodied Mobile Manipulationは、より多様な評価のための3つの新しいメトリクスとともに、ハイレベルで低レベルな実施タスクを統一されたフレームワークにシームレスに統合します。
We design model, a sophisticated agent system, a LLM with Direct Preference Optimization (DPO), light weighted navigation and operation model, and multiple error detection mechanism。
論文 参考訳(メタデータ) (2025-03-11T16:42:36Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT(Multi-Agent LLM Training)は、推論プロセスを生成、検証、改善ステップに分割する、新しいポストトレーニング戦略である。
MATH、GSM8K、CSQAでは、MALTは、それぞれ15.66%、7.42%、9.40%の相対的な改善で同じベースラインLLMを上回っている。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [62.854649499866774]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
MADiffは拡散型マルチエージェント学習フレームワークである。
分散ポリシと集中型コントローラの両方として機能する。
実験の結果,MADiffは様々なマルチエージェント学習タスクにおいて,ベースラインアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2023-05-27T02:14:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。