論文の概要: Tokenization Strategies for Low-Resource Agglutinative Languages in Word2Vec: Case Study on Turkish and Finnish
- arxiv url: http://arxiv.org/abs/2509.14238v1
- Date: Wed, 27 Aug 2025 22:01:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-21 06:05:45.816318
- Title: Tokenization Strategies for Low-Resource Agglutinative Languages in Word2Vec: Case Study on Turkish and Finnish
- Title(参考訳): Word2Vecにおける低リソース凝集言語のためのトークン化戦略:トルコ語とフィンランド語を事例として
- Authors: Jinfan Frank Hu,
- Abstract要約: トークン化は凝集言語処理において重要な役割を担っている。
本研究は,静的単語埋め込みの品質に及ぼす各種トークン化戦略の影響を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tokenization plays a critical role in processing agglutinative languages, where a single word can encode multiple morphemes carrying syntactic and semantic information. This study evaluates the impact of various tokenization strategies - word-level, character-level, n-gram, and Byte Pair Encoding (BPE) - on the quality of static word embeddings generated by Word2Vec for Turkish and Finnish. Using a 10,000-article Wikipedia corpus, we trained models under low-resource conditions and evaluated them on a Named Entity Recognition (NER) task. Despite the theoretical appeal of subword segmentation, word-level tokenization consistently outperformed all alternatives across all tokenization strategies tested. These findings suggest that in agglutinative, low-resource contexts, preserving boundaries via word-level tokenization may yield better embedding performance than complex statistical methods. This has practical implications for developing NLP pipelines for under-resourced languages where annotated data and computing power are limited.
- Abstract(参考訳): 1つの単語が統語的および意味的な情報を持つ複数の形態素をエンコードできるような、凝集言語処理において、トークン化は重要な役割を担っている。
本研究では,単語レベル,文字レベル,n-gram,Byte Pair Encoding(BPE)といったさまざまなトークン化戦略が,トルコ語とフィンランド語でWord2Vecが生成した静的単語埋め込みの品質に与える影響を評価する。
1万個のウィキペディアコーパスを用いて、低リソース条件下でモデルをトレーニングし、名前付きエンティティ認識(NER)タスクで評価した。
サブワードセグメンテーションの理論的魅力にもかかわらず、単語レベルのトークン化はテストされた全てのトークン化戦略において、一貫して全ての選択肢よりも優れていた。
これらの結果から, 単語レベルのトークン化による境界の保存は, 複雑な統計的手法よりも優れた埋め込み性能をもたらす可能性が示唆された。
これは、アノテートされたデータと計算能力に制限があるアンダーリソース言語向けのNLPパイプラインを開発するために、実用的な意味を持つ。
関連論文リスト
- Tokenization Matters: Improving Zero-Shot NER for Indic Languages [2.964265227875254]
トークン化は自然言語処理(NLP)の重要な構成要素である
この研究は、BPE、SentencePiece、およびIndic言語を用いた文字レベルのトークン化戦略を体系的に比較する。
その結果、SentencePieceは低リソースのIndic言語において、NERのBPEよりも一貫して優れたパフォーマンスのアプローチであることがわかった。
論文 参考訳(メタデータ) (2025-04-23T17:28:38Z) - HYPEROFA: Expanding LLM Vocabulary to New Languages via Hypernetwork-Based Embedding Initialization [50.27950279695363]
多くの事前訓練された言語モデル (PLM) は、中級言語と低級言語で最適な性能を示す。
これを解決するための一般的な戦略は、ターゲット言語固有の新しいトークンを導入し、埋め込みを初期化し、ターゲット言語データに連続的な事前トレーニングを適用することである。
より適応的なトークン埋め込みのためのハイパーネットワークベースのアプローチであるHYPEROFAを提案する。
論文 参考訳(メタデータ) (2025-04-21T19:40:32Z) - Rethinking Tokenization: Crafting Better Tokenizers for Large Language
Models [0.0]
トークン化は言語モデル(LM)のパフォーマンスに大きく影響する。
本稿では,トークンと型とのバランスを,単語レベルからサブワードレベルへのトークン化の進化を追究する。
Less-is-Better (LiB) モデルは LLM トークンの新たなアプローチになり得る。
論文 参考訳(メタデータ) (2024-03-01T10:03:07Z) - Always Keep your Target in Mind: Studying Semantics and Improving
Performance of Neural Lexical Substitution [124.99894592871385]
本稿では,従来の言語モデルと最近の言語モデルの両方を用いた語彙置換手法の大規模比較研究を行う。
目的語に関する情報を適切に注入すれば,SOTA LMs/MLMsによるすでに競合する結果がさらに大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-06-07T16:16:19Z) - A Multi-level Supervised Contrastive Learning Framework for Low-Resource
Natural Language Inference [54.678516076366506]
自然言語推論(NLI)は、自然言語理解において、ますます重要な課題である。
本稿では,低リソースな自然言語推論のためのマルチSCLという,マルチレベルの教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-31T05:54:18Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - Multi-level Contrastive Learning for Cross-lingual Spoken Language
Understanding [90.87454350016121]
コントラスト学習のための難解なサンプルを, あらゆるレベルで生成するコードスイッチング手法を開発した。
言語間知識伝達にラベルセマンティクスを利用するラベル認識ジョイントモデルを開発した。
論文 参考訳(メタデータ) (2022-05-07T13:44:28Z) - A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task
Learning [8.052271364177988]
サブワードトークン化は、最近のNLPモデルで一般的に使われる入力前処理のステップである。
本稿では,サブワードトークン化からセグメンテーション情報を抽出し,語彙自由なニューラルトークン化手法を提案する。
我々のトークンライザは、多言語(NLI)タスクとコードスイッチング(センチメント分析)タスクのパフォーマンスを一貫して改善します。
論文 参考訳(メタデータ) (2022-04-22T16:50:49Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
本稿では,構文の変更を行うテキスト拡張手法の3つのカテゴリについて検討する。
音声のタグ付けや依存性解析,セマンティックロールのラベル付けなどにおいて,多種多様な言語ファミリに対して比較を行った。
以上の結果から,mBERTに基づくベースラインの強化により,より高機能化が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-11-18T10:52:48Z) - More Than Words: Collocation Tokenization for Latent Dirichlet
Allocation Models [71.42030830910227]
モデルが異なる環境でクラスタリングの品質を測定するための新しい指標を提案する。
マージトークンでトレーニングされたトピックは、マージされていないモデルよりも、より明確で、一貫性があり、トピックを区別する効果が高いトピックキーをもたらすことを示す。
論文 参考訳(メタデータ) (2021-08-24T14:08:19Z) - Language-Independent Tokenisation Rivals Language-Specific Tokenisation
for Word Similarity Prediction [12.376752724719005]
言語に依存しないトークン化(LIT)メソッドはラベル付き言語リソースや語彙を必要としない。
言語固有のトークン化(LST)手法は、長い歴史と確立された歴史を持ち、慎重に作成された語彙とトレーニングリソースを用いて開発されている。
意味的類似度測定を多種多様な言語を対象とした評価課題として用いた2つの手法を実証的に比較した。
論文 参考訳(メタデータ) (2020-02-25T16:24:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。