論文の概要: Generating Part-Based Global Explanations Via Correspondence
- arxiv url: http://arxiv.org/abs/2509.15393v1
- Date: Thu, 18 Sep 2025 20:00:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:10.887507
- Title: Generating Part-Based Global Explanations Via Correspondence
- Title(参考訳): パートベースグローバル説明の生成と対応
- Authors: Kunal Rathore, Prasad Tadepalli,
- Abstract要約: ユーザ定義部分ラベルを限られた画像集合から活用し,より大規模なデータセットに効率的に転送する手法を提案する。
これにより、部分ベースの局所的な説明を集約することでグローバルな象徴的説明を生成することができ、最終的には大規模なモデル決定に対して人間に理解可能な説明を提供する。
- 参考スコア(独自算出の注目度): 8.83354835766461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are notoriously opaque. Existing explanation methods often focus on localized visual explanations for individual images. Concept-based explanations, while offering global insights, require extensive annotations, incurring significant labeling cost. We propose an approach that leverages user-defined part labels from a limited set of images and efficiently transfers them to a larger dataset. This enables the generation of global symbolic explanations by aggregating part-based local explanations, ultimately providing human-understandable explanations for model decisions on a large scale.
- Abstract(参考訳): ディープラーニングモデルは不透明で悪名高い。
既存の説明手法は、個々の画像の局所的な視覚的説明に焦点を当てることが多い。
概念に基づく説明は、グローバルな洞察を提供する一方で、広範なアノテーションを必要とし、かなりのラベリングコストを発生させる。
ユーザ定義部分ラベルを限られた画像集合から活用し,より大規模なデータセットに効率的に転送する手法を提案する。
これにより、部分ベースの局所的な説明を集約することでグローバルな象徴的説明を生成することができ、最終的には大規模なモデル決定に対して人間に理解可能な説明を提供する。
関連論文リスト
- Global Human-guided Counterfactual Explanations for Molecular Properties via Reinforcement Learning [49.095065258759895]
我々は分子特性予測のための新しいグローバルな説明モデルRLHEXを開発した。
反事実的な説明と人間の定義した原則を一致させ、説明をより解釈しやすくし、専門家が容易に評価できるようにする。
RLHEXによるグローバルな説明は、より多くの4.12%の入力グラフをカバーし、3つの分子データセットの平均0.47%の反実的な説明セットと入力セットの間の距離を削減している。
論文 参考訳(メタデータ) (2024-06-19T22:16:40Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridgeは、コンテキストテキスト情報を活用することで、ローカルおよびグローバルな視点をブリッジするフレームワークである。
提案手法は最先端性能を実現し,グラフ対応トークン削減モジュールは効率を大幅に向上し,スケーラビリティの問題を解消する。
論文 参考訳(メタデータ) (2024-06-18T13:35:25Z) - Interpretable Network Visualizations: A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-based Image Classification [5.087579454836169]
State-of-the-art explainability Method は、特定のクラスが特定された場所を示すために、サリエンシマップを生成する。
本稿では,畳み込みニューラルネットワークの機能抽出プロセス全体を説明するポストホック手法を提案する。
また,複数の画像にラベルを集約することで,グローバルな説明を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T09:21:35Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainerは、言語ビジョンモデルを活用することで、マルチモーダルなグローバルな説明可能性を実現する新しいフレームワークである。
最適化されたテキストプロンプトに条件付けされた拡散モデルを使用し、クラス出力を最大化する画像を合成する。
生成した視覚的記述の分析により、バイアスと突発的特徴の自動識別が可能になる。
論文 参考訳(メタデータ) (2024-04-03T10:11:22Z) - A Unified Concept-Based System for Local, Global, and Misclassification
Explanations [13.321794212377949]
地域概念とグローバル概念の両方を教師なしで学習するための統合された概念ベースシステムを提案する。
我々の主な目的は、代理説明ネットワークを訓練することで、各データカテゴリの根底にある本質的な概念を明らかにすることである。
我々のアプローチは、正確な予測と誤予測の両方を説明するのに役立ちます。
論文 参考訳(メタデータ) (2023-06-06T09:28:37Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
本稿では,特徴集合をグラフノードとして表現し,それらの関係を学習可能なエッジとして表現することで,特徴集合の依存関係を学習するデータ駆動型アプローチを提案する。
また,複数のビューから情報を動的に集約するために,より小さな潜在グラフを学習する新しい階層グラフオートエンコーダLEGATOを導入する。
論文 参考訳(メタデータ) (2023-05-31T10:36:10Z) - Interpreting Vision and Language Generative Models with Semantic Visual
Priors [3.3772986620114374]
我々は、出力シーケンス全体の意味表現を活用する意味のある説明を生成できるSHAPに基づくフレームワークを開発する。
提案手法は,従来の手法よりも計算コストが低く,意味論的に表現力に富んだ説明を生成する。
論文 参考訳(メタデータ) (2023-04-28T17:10:08Z) - From Attribution Maps to Human-Understandable Explanations through
Concept Relevance Propagation [16.783836191022445]
eXplainable Artificial Intelligence(XAI)の分野は、今日の強力だが不透明なディープラーニングモデルに透明性をもたらすことを目指している。
局所的なXAI手法は属性マップの形で個々の予測を説明するが、グローバルな説明手法はモデルが一般的にエンコードするために学んだ概念を視覚化する。
論文 参考訳(メタデータ) (2022-06-07T12:05:58Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
説明は、深い分類網が決定を下す視覚的証拠の領域として定義される。
トレーニング戦略は周期的な正当性に基づくフィードバックを強制し、モデルが地中真実に直接対応する画像領域に焦点を合わせることを奨励する。
論文 参考訳(メタデータ) (2020-03-13T22:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。