論文の概要: Hierarchical Reinforcement Learning with Low-Level MPC for Multi-Agent Control
- arxiv url: http://arxiv.org/abs/2509.15799v1
- Date: Fri, 19 Sep 2025 09:27:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:11.104032
- Title: Hierarchical Reinforcement Learning with Low-Level MPC for Multi-Agent Control
- Title(参考訳): マルチエージェント制御のための低レベルMPCを用いた階層強化学習
- Authors: Max Studt, Georg Schildbach,
- Abstract要約: 強化学習(RL)による戦術的意思決定とモデル予測制御(MPC)による低レベル実行を組み合わせた階層的枠組みを提案する。
プレデター・プリーベンチマークでテストしたところ、我々のアプローチは報酬、安全性、一貫性の点でエンドツーエンドとシールドベースのRLベースラインよりも優れています。
- 参考スコア(独自算出の注目度): 1.5856188608650232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving safe and coordinated behavior in dynamic, constraint-rich environments remains a major challenge for learning-based control. Pure end-to-end learning often suffers from poor sample efficiency and limited reliability, while model-based methods depend on predefined references and struggle to generalize. We propose a hierarchical framework that combines tactical decision-making via reinforcement learning (RL) with low-level execution through Model Predictive Control (MPC). For the case of multi-agent systems this means that high-level policies select abstract targets from structured regions of interest (ROIs), while MPC ensures dynamically feasible and safe motion. Tested on a predator-prey benchmark, our approach outperforms end-to-end and shielding-based RL baselines in terms of reward, safety, and consistency, underscoring the benefits of combining structured learning with model-based control.
- Abstract(参考訳): 動的で制約の多い環境で安全かつ協調的な行動を達成することは、学習ベースの制御において大きな課題である。
純粋なエンドツーエンド学習はサンプル効率の低下と信頼性の制限に悩まされることが多いが、モデルベースの手法は事前に定義された参照と一般化の難しさに依存している。
本稿では,強化学習(RL)による戦術的意思決定と,モデル予測制御(MPC)による低レベル実行を組み合わせた階層的枠組みを提案する。
マルチエージェントシステムの場合、高レベルのポリシーは、構造化された関心領域(ROI)から抽象的なターゲットを選択することを意味し、MPCは動的に実現可能で安全な動きを保証する。
プレデター・プリーのベンチマークでテストしたところ、我々のアプローチは報酬、安全性、一貫性の観点からエンド・ツー・エンドとシールドベースのRLベースラインよりも優れており、構造化学習とモデルベースの制御を組み合わせる利点が強調されている。
関連論文リスト
- Application of LLM Guided Reinforcement Learning in Formation Control with Collision Avoidance [1.1718316049475228]
マルチエージェントシステム(Multi-Agent Systems、MAS)は、個々のエージェントの協調作業を通じて複雑な目的を達成する。
本稿では,効果的な報酬関数を設計する上での課題を克服する新しい枠組みを提案する。
タスクの優先順位付けにおいて,大規模言語モデル(LLM)を付与することにより,オンライン上で動的に調整可能な報酬関数を生成する。
論文 参考訳(メタデータ) (2025-07-22T09:26:00Z) - Offline Multi-agent Reinforcement Learning via Score Decomposition [51.23590397383217]
オフライン協調型マルチエージェント強化学習(MARL)は、分散シフトによる固有の課題に直面している。
この作業は、オフラインとオンラインのMARL間の分散ギャップを明示的に解決する最初の作業である。
論文 参考訳(メタデータ) (2025-05-09T11:42:31Z) - Adversarial Robustness through Dynamic Ensemble Learning [0.0]
敵対的攻撃は、事前訓練された言語モデル(PLM)の信頼性に重大な脅威をもたらす
本稿では,このような攻撃に対するPLMの堅牢性を高めるための新しいスキームであるDynamic Ensemble Learning (ARDEL) による対逆ロバスト性について述べる。
論文 参考訳(メタデータ) (2024-12-20T05:36:19Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Hierarchical Decision Making Based on Structural Information Principles [19.82391136775341]
本稿では,階層的意思決定のための構造情報原則に基づく新しいフレームワーク,すなわちSIDMを提案する。
本稿では,過去の状態-行動軌跡を処理し,状態と行動の抽象表現を構築する抽象化機構を提案する。
単エージェントシナリオのためのスキルベース学習手法と,多エージェントシナリオのためのロールベースの協調手法を開発し,そのどちらも,パフォーマンス向上のために様々な基礎アルゴリズムを柔軟に統合することができる。
論文 参考訳(メタデータ) (2024-04-15T13:02:00Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Chain-of-Thought Predictive Control [32.30974063877643]
複雑な低レベル制御のための実証から一般化可能な政策学習について研究する。
準最適デモを利用した新しい階層型模倣学習法を提案する。
論文 参考訳(メタデータ) (2023-04-03T07:59:13Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Constrained Model-based Reinforcement Learning with Robust Cross-Entropy
Method [30.407700996710023]
本稿では,制約違反に対するスパースインジケータ信号を用いた制約/安全強化学習問題について検討する。
本稿では,ニューラルネットワークアンサンブルモデルを用いて予測の不確実性を推定し,モデル予測制御を基本制御フレームワークとして利用する。
その結果,本手法は現状のベースラインよりもはるかに少ない制約違反数でタスクを完了させることが判明した。
論文 参考訳(メタデータ) (2020-10-15T18:19:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。