論文の概要: An Equivariant Graph Network for Interpretable Nanoporous Materials Design
- arxiv url: http://arxiv.org/abs/2509.15908v1
- Date: Fri, 19 Sep 2025 12:04:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:11.154686
- Title: An Equivariant Graph Network for Interpretable Nanoporous Materials Design
- Title(参考訳): ナノ多孔質材料設計のための等価グラフネットワーク
- Authors: Zhenhao Zhou, Salman Bin Kashif, Dawei Feng, Jin-Hu Dou, Kaihang Shi, Tao Deng, Zhenpeng Yao,
- Abstract要約: 大規模ナノ多孔体構造を局所的な幾何学的部位に分解する3次元周期空間サンプリング法について報告する。
本モデルは, ガスの貯蔵, 分離, 導電性に関する特性予測のための最先端の精度とデータ効率を実現する。
- 参考スコア(独自算出の注目度): 9.19549550549583
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nanoporous materials hold promise for diverse sustainable applications, yet their vast chemical space poses challenges for efficient design. Machine learning offers a compelling pathway to accelerate the exploration, but existing models lack either interpretability or fidelity for elucidating the correlation between crystal geometry and property. Here, we report a three-dimensional periodic space sampling method that decomposes large nanoporous structures into local geometrical sites for combined property prediction and site-wise contribution quantification. Trained with a constructed database and retrieved datasets, our model achieves state-of-the-art accuracy and data efficiency for property prediction on gas storage, separation, and electrical conduction. Meanwhile, this approach enables the interpretation of the prediction and allows for accurate identification of significant local sites for targeted properties. Through identifying transferable high-performance sites across diverse nanoporous frameworks, our model paves the way for interpretable, symmetry-aware nanoporous materials design, which is extensible to other materials, like molecular crystals and beyond.
- Abstract(参考訳): ナノ多孔質材料は多様な持続可能な応用を約束するが、その広大な化学空間は効率的な設計に挑戦する。
機械学習は探索を加速するための魅力的な経路を提供するが、既存のモデルは結晶幾何学と性質の相関を解明するための解釈可能性や忠実さを欠いている。
本稿では,大規模ナノ多孔体構造を局所的な幾何学的部位に分解し,特性予測とサイト貢献量化を組み合わせた3次元周期空間サンプリング手法を提案する。
構築されたデータベースと検索されたデータセットを用いて学習し,ガスの貯蔵,分離,電気伝導に関する特性予測のための最先端の精度とデータ効率を実現する。
一方,本手法により予測の解釈が可能となり,対象物に対する重要な場所の正確な同定が可能となった。
各種ナノ多孔体フレームワーク間での移動可能な高性能部位の同定により,本モデルは,分子結晶など他の材料にも拡張可能な,解釈可能な対称性を有するナノ多孔質材料設計の道を開く。
関連論文リスト
- Causal Discovery from Data Assisted by Large Language Models [50.193740129296245]
知識駆動発見のために、実験データと事前のドメイン知識を統合することが不可欠である。
本稿では、高分解能走査透過電子顕微鏡(STEM)データと大規模言語モデル(LLM)からの洞察を組み合わせることで、このアプローチを実証する。
SmドープBiFeO3(SmBFO)におけるChatGPTをドメイン固有文献に微調整することにより、構造的、化学的、分極的自由度の間の因果関係をマッピングするDAG(Directed Acyclic Graphs)の隣接行列を構築する。
論文 参考訳(メタデータ) (2025-03-18T02:14:49Z) - Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Data-efficient and Interpretable Inverse Materials Design using a Disentangled Variational Autoencoder [2.563209727695243]
逆材料設計は、新しい物質発見の加速に成功している。
多くの逆材料設計法では、教材表現のコンパクトな記述を提供するために潜在空間を学習する教師なし学習を用いる。
本稿では,不整合変分オートエンコーダをベースとした半教師付き学習手法を提案し,特徴,潜伏変数,対象特性の確率的関係を学習する。
論文 参考訳(メタデータ) (2024-09-10T02:21:13Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Differentiable graph-structured models for inverse design of lattice
materials [0.0]
異なる環境条件に適応可能な物理化学的性質を有する建築材料は、材料科学の破壊的な新しい領域を具現化している。
正規および不規則な格子材料に対するグラフベース表現を用いた新しい計算手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T18:00:21Z) - Machine learning based prediction of the electronic structure of
quasi-one-dimensional materials under strain [0.0]
準1次元材料の電子構造を予測できる機械学習モデルを提案する。
この技術はナノチューブ、ナノリボン、ナノワイヤ、ナノアセンブリといった重要な材料に適用される。
論文 参考訳(メタデータ) (2022-02-02T09:32:03Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - Machine learning with persistent homology and chemical word embeddings
improves prediction accuracy and interpretability in metal-organic frameworks [0.07874708385247352]
材料の構造と化学の複雑な表現をキャプチャする記述子を自動的に生成するエンド・ツー・エンドの機械学習モデルを提案する。
物質系から直接、幾何学的および化学的情報をカプセル化する。
提案手法は, 対象物間での精度, 転送可能性の両面において, 一般的に用いられている手作業による特徴量から構築したモデルに比べ, かなり改善されている。
論文 参考訳(メタデータ) (2020-10-01T16:31:46Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
深部生成モデルに基づく新しいデータ駆動メタマテリアル設計フレームワークを提案する。
本研究では,VAEの潜伏空間が,形状類似度を測定するための距離メートル法を提供することを示す。
機能的グレードとヘテロジニアスなメタマテリアルシステムの両方を設計することで、我々のフレームワークを実証する。
論文 参考訳(メタデータ) (2020-06-27T03:56:55Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。