論文の概要: Blind-Spot Guided Diffusion for Self-supervised Real-World Denoising
- arxiv url: http://arxiv.org/abs/2509.16091v1
- Date: Fri, 19 Sep 2025 15:35:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:11.230993
- Title: Blind-Spot Guided Diffusion for Self-supervised Real-World Denoising
- Title(参考訳): Blind-Spot Guided Diffusion for Self-supervised Real-World Denoising
- Authors: Shen Cheng, Haipeng Li, Haibin Huang, Xiaohong Liu, Shuaicheng Liu,
- Abstract要約: Blind-Spot Guided Diffusionは、現実のイメージをデノナイズするための新しい自己教師型フレームワークである。
提案手法は,盲点ネットワーク(BSN)の限界と,自己教師型認知への拡散モデルの適用の難しさの2つに対処する。
- 参考スコア(独自算出の注目度): 55.099717395320276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present Blind-Spot Guided Diffusion, a novel self-supervised framework for real-world image denoising. Our approach addresses two major challenges: the limitations of blind-spot networks (BSNs), which often sacrifice local detail and introduce pixel discontinuities due to spatial independence assumptions, and the difficulty of adapting diffusion models to self-supervised denoising. We propose a dual-branch diffusion framework that combines a BSN-based diffusion branch, generating semi-clean images, with a conventional diffusion branch that captures underlying noise distributions. To enable effective training without paired data, we use the BSN-based branch to guide the sampling process, capturing noise structure while preserving local details. Extensive experiments on the SIDD and DND datasets demonstrate state-of-the-art performance, establishing our method as a highly effective self-supervised solution for real-world denoising. Code and pre-trained models are released at: https://github.com/Sumching/BSGD.
- Abstract(参考訳): そこで本研究では,実世界のイメージデノーミングのための自己教師型フレームワークであるBlind-Spot Guided Diffusionを紹介する。
提案手法は,局所的な細部を犠牲にし,空間的独立性の仮定による画素不連続性を導入する,盲点ネットワーク(BSN)の限界と,自己監督型認知への拡散モデルの適用の困難という2つの大きな課題に対処する。
本稿では,BSNに基づく拡散分枝を合成し,半クリーンな画像を生成する二分岐拡散分枝と,基礎となる雑音分布をキャプチャする従来の拡散分枝とを組み合わせた2分岐拡散分枝を提案する。
ペアデータを必要としない効果的なトレーニングを実現するため,BSNベースのブランチを用いてサンプリングプロセスのガイドを行い,局所的な詳細を保存しながらノイズ構造を捉えた。
SIDDとDNDデータセットの大規模な実験により、最先端の性能が実証され、我々の手法は実世界のデノジングのための高効率な自己教師型ソリューションとして確立された。
コードと事前訓練されたモデルは、https://github.com/Sumching/BSGD.comでリリースされている。
関連論文リスト
- Low-Trace Adaptation of Zero-shot Self-supervised Blind Image Denoising [23.758547513866766]
自己教師型学習と教師型学習のギャップを埋めるために,トレース制約損失関数と低トレース適応型ノイズ2ノイズ(LoTA-N2N)モデルを提案する。
本手法は,ゼロショット自己監督型画像復調手法の領域内での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-19T02:47:33Z) - Random Sub-Samples Generation for Self-Supervised Real Image Denoising [9.459398471988724]
我々は,Smpling Different As Perturbation (SDAP) という,自己監督型実画像記述フレームワークを提案する。
トレーニング画像に適切な摂動を加えることで,BSNの性能を効果的に向上できることがわかった。
その結果、実世界のデータセット上で、最先端の自己教師型デノベーション手法を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-07-31T16:39:35Z) - Self-supervised Image Denoising with Downsampled Invariance Loss and
Conditional Blind-Spot Network [12.478287906337194]
ほとんどの代表的自己監督型デノイザーは盲点ネットワークに基づいている。
標準的な盲点ネットワークは、ノイズの画素ワイド相関により、実際のカメラノイズを低減できない。
実雑音を除去できる新しい自己教師型トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-19T08:55:27Z) - Exploring Efficient Asymmetric Blind-Spots for Self-Supervised Denoising in Real-World Scenarios [44.31657750561106]
実世界のシナリオにおけるノイズはしばしば空間的に相関しており、多くの自己教師型アルゴリズムは性能が良くない。
盲点サイズを自由に調整できる非対称可変ブラインド・スポットネットワーク(AT-BSN)を提案する。
提案手法は最先端技術を実現し,計算オーバーヘッドや視覚効果の観点から,他の自己教師付きアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-29T15:19:01Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
そこで本研究では,実世界の画像認識のための単純なベイズディープアンサンブル(BDE)手法を提案する。
我々のBDEは、最先端の復調法よりも+0.28dBPSNRのゲインを達成している。
我々のBDEは他の画像復元タスクにも拡張でき、ベンチマークデータセット上で+0.30dB、+0.18dB、+0.12dB PSNRゲインを達成することができる。
論文 参考訳(メタデータ) (2022-06-08T06:19:30Z) - AP-BSN: Self-Supervised Denoising for Real-World Images via Asymmetric
PD and Blind-Spot Network [60.650035708621786]
ブラインド・スポット・ネットワーク(BSN)とその変種は、自己監督型デノナイジングにおいて大きな進歩を遂げた。
自己教師付きBSNを用いて空間的に相関した実世界の雑音に対処することは困難である。
近年,実世界の雑音の空間的相関を取り除くために,画素シャッフルダウンサンプリング (PD) が提案されている。
本稿では,この問題に対処する非対称PD(AP)を提案する。
論文 参考訳(メタデータ) (2022-03-22T15:04:37Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
Neighbor2Neighborを提示し、ノイズの多い画像のみで効果的な画像消音モデルをトレーニングします。
ネットワークのトレーニングに使用される入力とターゲットは、同じノイズ画像からサブサンプリングされた画像である。
デノイジングネットワークは、第1段階で生成されたサブサンプルトレーニングペアで訓練され、提案された正規化器は、より良いパフォーマンスのための追加の損失として訓練される。
論文 参考訳(メタデータ) (2021-01-08T02:03:25Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。