論文の概要: Discovering Software Parallelization Points Using Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2509.16215v2
- Date: Wed, 01 Oct 2025 23:33:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.083128
- Title: Discovering Software Parallelization Points Using Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークによるソフトウェア並列化点の発見
- Authors: Izavan dos S. Correia, Henrique C. T. Santos, Tiago A. E. Ferreira,
- Abstract要約: 本研究では,並列化の可能性に応じて,プログラム中のループを発見するためのディープラーニングに基づくアプローチを提案する。
2つの遺伝的アルゴリズムに基づくコードジェネレータが開発され、2つの異なるタイプのコードを生成する。
2つのディープラーニングモデル、DNN(Deep Neural Network)とCNN(Convolutional Neural Network)が実装され、その分類が行われた。
- 参考スコア(独自算出の注目度): 1.5866931449827322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a deep learning-based approach for discovering loops in programming code according to their potential for parallelization. Two genetic algorithm-based code generators were developed to produce two distinct types of code: (i) independent loops, which are parallelizable, and (ii) ambiguous loops, whose dependencies are unclear, making them impossible to define if the loop is parallelizable or not. The generated code snippets were tokenized and preprocessed to ensure a robust dataset. Two deep learning models - a Deep Neural Network (DNN) and a Convolutional Neural Network (CNN) - were implemented to perform the classification. Based on 30 independent runs, a robust statistical analysis was employed to verify the expected performance of both models, DNN and CNN. The CNN showed a slightly higher mean performance, but the two models had a similar variability. Experiments with varying dataset sizes highlighted the importance of data diversity for model performance. These results demonstrate the feasibility of using deep learning to automate the identification of parallelizable structures in code, offering a promising tool for software optimization and performance improvement.
- Abstract(参考訳): 本研究では,並列化の可能性に応じて,プログラム中のループを発見するためのディープラーニングに基づくアプローチを提案する。
2つの遺伝的アルゴリズムに基づくコードジェネレータは、2つの異なるタイプのコードを生成するために開発された。
(i)独立ループ、並列化可能、及び
(ii) 依存関係が不明確であるあいまいなループは、ループが並列化可能かどうかを定義できない。
生成されたコードスニペットはトークン化され、堅牢なデータセットを保証するために前処理される。
2つのディープラーニングモデル、DNN(Deep Neural Network)とCNN(Convolutional Neural Network)が実装され、その分類が行われた。
30回の独立ランに基づいて、DNNとCNNの両モデルの期待性能を検証するために、頑健な統計分析が採用された。
CNNは平均性能をわずかに上回ったが、この2つのモデルには同様のバリエーションがあった。
さまざまなデータセットサイズの実験は、モデルパフォーマンスにおけるデータの多様性の重要性を強調した。
これらの結果は、ディープラーニングを用いてコード内の並列化可能な構造の自動識別を実現する可能性を示し、ソフトウェア最適化と性能改善のための有望なツールを提供する。
関連論文リスト
- Parallel Neural Networks in Golang [0.0]
本稿では,並列ニューラルネットワーク(PNN)と新しいプログラミング言語Golangの設計と実装について述べる。
Golangとその固有の並列化サポートは、並列ニューラルネットワークシミュレーションにおいて、シーケンシャルなバリエーションに比べて処理時間が大幅に短縮されていることが証明された。
論文 参考訳(メタデータ) (2023-04-19T11:56:36Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
本論文は,3次元学習アーキテクチャを構築するための一般的なフレームワークを設計することによる課題に対処する。
提案手法はPointNetやDGCNNといった一般的なバックボーンに適用できる。
ModelNet40、ShapeNet、および実世界のデータセットであるScanObjectNNの実験では、この手法が効率、回転、精度の間の大きなトレードオフを達成することを示した。
論文 参考訳(メタデータ) (2022-09-13T12:12:19Z) - Efficient and Robust Mixed-Integer Optimization Methods for Training
Binarized Deep Neural Networks [0.07614628596146598]
二元活性化関数と連続または整数重み付きディープニューラルネットワーク(BDNN)について検討する。
BDNNは、古典的な混合整数計画解法により、大域的最適性に解けるような、有界な重み付き混合整数線形プログラムとして再構成可能であることを示す。
トレーニング中にBDNNの堅牢性を強制するロバストモデルが初めて提示される。
論文 参考訳(メタデータ) (2021-10-21T18:02:58Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
我々は、畳み込み動的アライメントネットワーク(CoDA Nets)と呼ばれる新しいニューラルネットワークモデルを紹介する。
彼らの中核となるビルディングブロックは動的アライメントユニット(DAU)であり、タスク関連パターンに合わせて動的に計算された重みベクトルで入力を変換するように最適化されている。
CoDAネットは一連の入力依存線形変換を通じて分類予測をモデル化し、出力を個々の入力コントリビューションに線形分解することができる。
論文 参考訳(メタデータ) (2021-09-27T12:39:46Z) - Parareal Neural Networks Emulating a Parallel-in-time Algorithm [1.988145627448243]
ディープニューラルネットワーク(DNN)が深まるにつれて、トレーニング時間が増加する。
本稿では,並列ニューラルネットワークを構築するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T02:03:39Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
本稿では,mipソルバの2つのキーサブタスクに学習を適用し,高品質なジョイント変数割当を生成し,その割当と最適課題との客観的値の差を限定する。
提案手法は,ニューラルネットワークに基づく2つのコンポーネントであるニューラルダイバーディングとニューラルブランチを構築し,SCIPなどのベースMIPソルバで使用する。
2つのGoogle生産データセットとMIPLIBを含む6つの現実世界データセットに対するアプローチを評価し、それぞれに別々のニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-12-23T09:33:11Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
そこで本稿では,MobileNet をバイナライズする際の構築と訓練を容易にするための進化的探索手法を提案する。
ワンショットアーキテクチャ検索フレームワークに着想を得て、グループ畳み込みのアイデアを操り、効率的な1ビット畳み込みニューラルネットワーク(CNN)を設計する。
我々の目標は、グループ畳み込みの最良の候補を探索することで、小さなが効率的なバイナリニューラルアーキテクチャを考案することである。
論文 参考訳(メタデータ) (2020-05-13T13:25:51Z) - Adaptive Explainable Neural Networks (AxNNs) [8.949704905866888]
我々は、予測性能とモデル解釈可能性の両目標を達成するために、Adaptive Explainable Neural Networks (AxNN) と呼ばれる新しいフレームワークを開発した。
予測性能向上のために,一般化された付加的モデルネットワークと付加的インデックスモデルからなる構造化ニューラルネットワークを構築した。
本稿では,AxNNの結果を主効果と高次相互作用効果に分解する方法を示す。
論文 参考訳(メタデータ) (2020-04-05T23:40:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。