論文の概要: Improving Deep Tabular Learning
- arxiv url: http://arxiv.org/abs/2509.16354v1
- Date: Fri, 19 Sep 2025 18:51:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:15.750585
- Title: Improving Deep Tabular Learning
- Title(参考訳): 深層学習の改善
- Authors: Sivan Sarafian, Yehudit Aperstein,
- Abstract要約: タブラルデータは依然として現実世界の情報の支配的な形態であるが、ディープラーニングには永続的な課題が伴う。
本稿では,表層学習に特化して設計されたトランスフォーマーベースのアーキテクチャであるルールネットを紹介する。
- 参考スコア(独自算出の注目度): 1.2891210250935148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tabular data remain a dominant form of real-world information but pose persistent challenges for deep learning due to heterogeneous feature types, lack of natural structure, and limited label-preserving augmentations. As a result, ensemble models based on decision trees continue to dominate benchmark leaderboards. In this work, we introduce RuleNet, a transformer-based architecture specifically designed for deep tabular learning. RuleNet incorporates learnable rule embeddings in a decoder, a piecewise linear quantile projection for numerical features, and feature masking ensembles for robustness and uncertainty estimation. Evaluated on eight benchmark datasets, RuleNet matches or surpasses state-of-the-art tree-based methods in most cases, while remaining computationally efficient, offering a practical neural alternative for tabular prediction tasks.
- Abstract(参考訳): タブラルデータは依然として現実世界の情報の主要な形態であるが、不均一な特徴タイプ、自然構造の欠如、ラベル保存強化の制限により、ディープラーニングに永続的な課題をもたらす。
その結果、決定木に基づくアンサンブルモデルがベンチマークリーダーボードを支配し続けている。
本稿では,表層学習に特化して設計されたトランスフォーマーベースのアーキテクチャであるルールネットを紹介する。
RuleNetには、デコーダに学習可能なルール埋め込み、数値的特徴のための一括線形量子化プロジェクション、堅牢性と不確実性推定のための特徴マスキングアンサンブルが組み込まれている。
RuleNetは8つのベンチマークデータセットに基づいて評価され、ほとんどのケースで最先端のツリーベースのメソッドと一致または超過するが、計算的に効率的であり、表形式の予測タスクの実用的なニューラルネットワーク代替手段を提供する。
関連論文リスト
- Make Still Further Progress: Chain of Thoughts for Tabular Data Leaderboard [27.224577475861214]
機械学習の基本的なデータフォーマットであるタブラルデータは、競争や現実世界のアプリケーションで主に利用されている。
本研究では,大規模言語モデルを活用したテキスト内アンサンブルフレームワークを提案する。
提案手法は,各テストインスタンスの周囲のコンテキストを,その近傍と外部モデルのプールからの予測を用いて構築する。
論文 参考訳(メタデータ) (2025-05-19T17:52:58Z) - Learning Decision Trees as Amortized Structure Inference [59.65621207449269]
本稿では,予測決定木アンサンブルを学習するためのハイブリッドアモータイズされた構造推論手法を提案する。
提案手法であるDT-GFNは,標準分類ベンチマークにおける最先端決定木やディープラーニング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-03-10T07:05:07Z) - Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later [76.66498833720411]
K$-nearest neighbors (KNN) はもともと,インスタンス間のセマンティックな類似性を捉えるために線形投影を学習するために設計されたものだ。
意外なことに、SGDを用いたNAAの実装と次元減少のない実装は、表データの良好な性能をすでに達成しています。
本稿では、損失関数、予測戦略、深いアーキテクチャなど、これらの改善の背景にある要因を分析して、論文を締めくくる。
論文 参考訳(メタデータ) (2024-07-03T16:38:57Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
本稿では,大規模言語モデル(LLM)を用いて,効率的な特徴生成ルールを同定するフレームワークを提案する。
我々は、自然言語で容易に表現できるため、この推論情報を伝達するために決定木を使用します。
OCTreeは様々なベンチマークで様々な予測モデルの性能を継続的に向上させる。
論文 参考訳(メタデータ) (2024-06-12T08:31:34Z) - Tree-Regularized Tabular Embeddings [22.095328171882223]
タブラルニューラルネットワーク(NN)は注目を浴びており、近年の進歩により、多くの公開データセット上のツリーベースモデルに対するパフォーマンスギャップが徐々に狭まりつつある。
我々は、均質な埋め込みの重要性を強調し、教師付き事前学習による入力の正規化に交互に集中する。
具体的には、事前訓練された木のアンサンブルの構造を利用して、生変数を単一のベクトル(T2V)またはトークンの配列(T2T)に変換する。
論文 参考訳(メタデータ) (2024-03-01T20:26:33Z) - Is Deep Learning finally better than Decision Trees on Tabular Data? [19.657605376506357]
タブラルデータは、多くの現実世界のアプリケーションでその汎用性と使いやすさのために、ユビキタスなデータモダリティである。
データに関する最近の研究は、この領域におけるニューラルネットワークの限界についてユニークな視点を提供する。
本研究は、その基礎となる学習パラダイムに基づいて、10の最先端モデルを分類する。
論文 参考訳(メタデータ) (2024-02-06T12:59:02Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
データサイエンティストは通常、データセットにできるだけ多くの機能を集め、既存の機能から新しい機能を設計する。
既存のタブ形式の特徴選択のためのベンチマークでは、古典的な下流モデル、おもちゃの合成データセット、あるいは下流のパフォーマンスに基づいて特徴セレクタを評価していない。
変換器を含む下流ニューラルネットワーク上で評価された課題のある特徴選択ベンチマークを構築した。
また,従来の特徴選択法よりも高い性能を有するニューラルネットワークのための,Lassoのインプット・グラディエント・ベース・アナログも提案する。
論文 参考訳(メタデータ) (2023-11-10T05:26:10Z) - Why do tree-based models still outperform deep learning on tabular data? [0.0]
木をベースとしたモデルが中規模データの最先端のままであることを示す。
木系モデルとニューラルネットワーク(NN)の異なる帰納バイアスに関する実証的研究を行う。
論文 参考訳(メタデータ) (2022-07-18T08:36:08Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
上流データにより、グラフニューラルネットワークはGBDTモデルよりも決定的な優位性を示す。
そこで本研究では,表在化学習のための現実的な診断ベンチマークを提案する。
上流と下流の特徴セットが異なる場合の擬似特徴法を提案する。
論文 参考訳(メタデータ) (2022-06-30T14:24:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。