論文の概要: Interpretable Clinical Classification with Kolgomorov-Arnold Networks
- arxiv url: http://arxiv.org/abs/2509.16750v1
- Date: Sat, 20 Sep 2025 17:21:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:15.957123
- Title: Interpretable Clinical Classification with Kolgomorov-Arnold Networks
- Title(参考訳): Kolgomorov-Arnold Networks による解釈可能な臨床分類
- Authors: Alejandro Almodóvar, Patricia A. Apellániz, Alba Garrido, Fernando Fernández-Salvador, Santiago Zazo, Juan Parras,
- Abstract要約: Kolmogorov-Arnold Networks (KAN) は、透明で象徴的な表現を通じて固有の解釈能力を提供する。
Kansは、組み込みの患者レベルの洞察、直感的な可視化、最寄りの患者の検索をサポートする。
これらの結果は、カンを、臨床医が理解し、監査し、行動できる信頼できるAIへの有望なステップと位置づけている。
- 参考スコア(独自算出の注目度): 70.72819760172744
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Why should a clinician trust an Artificial Intelligence (AI) prediction? Despite the increasing accuracy of machine learning methods in medicine, the lack of transparency continues to hinder their adoption in clinical practice. In this work, we explore Kolmogorov-Arnold Networks (KANs) for clinical classification tasks on tabular data. Unlike traditional neural networks, KANs are function-based architectures that offer intrinsic interpretability through transparent, symbolic representations. We introduce Logistic-KAN, a flexible generalization of logistic regression, and Kolmogorov-Arnold Additive Model (KAAM), a simplified additive variant that delivers transparent, symbolic formulas. Unlike black-box models that require post-hoc explainability tools, our models support built-in patient-level insights, intuitive visualizations, and nearest-patient retrieval. Across multiple health datasets, our models match or outperform standard baselines, while remaining fully interpretable. These results position KANs as a promising step toward trustworthy AI that clinicians can understand, audit, and act upon.
- Abstract(参考訳): なぜ臨床医は人工知能(AI)の予測を信用すべきなのか?
医学における機械学習手法の精度が向上しているにもかかわらず、透明性の欠如は臨床実践における導入を妨げ続けている。
本研究では,カルモゴロフ・アルノルドネットワーク(KAN)を用いて,表型データを用いた臨床分類課題について検討する。
従来のニューラルネットワークとは異なり、kanは関数ベースのアーキテクチャであり、透過的で象徴的な表現を通じて本質的な解釈性を提供する。
本稿では,ロジスティック回帰の柔軟な一般化であるロジスティック・カンと,透明な記号式を提供する簡易な加法モデルであるコルモゴロフ・アルノルド加法モデル(KAAM)を紹介する。
ホック後の説明性ツールを必要とするブラックボックスモデルとは異なり、私たちのモデルは、組み込みの患者レベルの洞察、直感的な視覚化、最寄りの患者の検索をサポートする。
複数の健康データセットにまたがって、私たちのモデルは標準ベースラインにマッチするか、あるいは上回っているが、完全に解釈可能である。
これらの結果は、カンを、臨床医が理解し、監査し、行動できる信頼できるAIへの有望なステップと位置づけている。
関連論文リスト
- Automated SNOMED CT Concept Annotation in Clinical Text Using Bi-GRU Neural Networks [0.31457219084519]
本研究では,双方向GRUモデルを用いたSNOMEDCT概念認識のためのニューラルネットワークラベリング手法を提案する。
ドメイン適応型SpaCyおよびSciBERTベースのトークン化を用いてテキストを前処理し,テキストを文脈,構文,形態に富んだ重なり合う19個のチャンクに分割する。
Bi-GRUモデルは、IOBタグを指定してコンセプトスパンを特定し、検証セット上で90%のF1スコアで強力なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-08-04T16:08:49Z) - Concept-Guided Interpretability via Neural Chunking [64.6429903327095]
ニューラルネットワークは、トレーニングデータの規則性を反映した生の集団活動のパターンを示す。
神経集団レベルで繰り返しチャンクを抽出する3つの方法を提案する。
私たちの研究は、認知原則と自然主義的データの構造の両方を活用する、解釈可能性の新しい方向性を指し示しています。
論文 参考訳(メタデータ) (2025-05-16T13:49:43Z) - A Knowledge Distillation-Based Approach to Enhance Transparency of Classifier Models [5.8996922379678]
医用画像分析では、高い透明性とモデルの解釈可能性によって、臨床医はAIモデルの意思決定プロセスをよりよく理解し、信頼することができる。
医用画像解析におけるAIモデルの透明性を高めることを目的とした知識蒸留(KD)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2025-02-21T21:43:21Z) - Hybrid Interpretable Deep Learning Framework for Skin Cancer Diagnosis: Integrating Radial Basis Function Networks with Explainable AI [1.1049608786515839]
皮膚がんは世界中で最も流行し、致命的な疾患の1つである。
本稿では,畳み込みニューラルネットワーク(CNN)とラジアル基底関数(RBF)ネットワークを統合するハイブリッドディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-24T19:19:02Z) - Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
医用イメージングに適した説明可能なAI手法を開発した。
我々は、画像領域と周波数領域の両方にわたるMRIスキャンを分析する畳み込みニューラルネットワーク(CNN)を採用している。
このアプローチは、初期のトレーニング効率を高めるだけでなく、追加機能がモデル予測にどのように影響するかの理解を深めます。
論文 参考訳(メタデータ) (2024-09-20T15:43:26Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KAN)は、非線形学習可能なアクティベーション関数のスタックを通じてニューラルネットワーク学習を再構築する。
トークン化中間表現であるU-KAN上に専用kan層を統合することにより,確立したU-Netパイプラインを検証,修正,再設計する。
さらに、拡散モデルにおける代替U-Netノイズ予測器としてのU-KANの可能性を探り、タスク指向モデルアーキテクチャの生成にその適用性を実証した。
論文 参考訳(メタデータ) (2024-06-05T04:13:03Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Rationale production to support clinical decision-making [31.66739991129112]
本稿では,病院の退院予測にInfoCalを適用した。
選択された解釈可能性を持つ各提示モデルや特徴重要度法は,それぞれ異なる結果をもたらす。
論文 参考訳(メタデータ) (2021-11-15T09:02:10Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。