論文の概要: A Chain-of-thought Reasoning Breast Ultrasound Dataset Covering All Histopathology Categories
- arxiv url: http://arxiv.org/abs/2509.17046v2
- Date: Tue, 23 Sep 2025 02:04:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 11:50:03.929526
- Title: A Chain-of-thought Reasoning Breast Ultrasound Dataset Covering All Histopathology Categories
- Title(参考訳): 全病理組織分類を網羅した乳房超音波データセットの検討
- Authors: Haojun Yu, Youcheng Li, Zihan Niu, Nan Zhang, Xuantong Gong, Huan Li, Zhiying Zou, Haifeng Qi, Zhenxiao Cao, Zijie Lan, Xingjian Yuan, Jiating He, Haokai Zhang, Shengtao Zhang, Zicheng Wang, Dong Wang, Ziwei Zhao, Congying Chen, Yong Wang, Wangyan Qin, Qingli Zhu, Liwei Wang,
- Abstract要約: 4,838例の10,019病変の11,439枚の画像を含む,チェーン・オブ・シント(CoT)推論分析のためのデータセットであるBUS-CoTを提案する。
我々は,臨床実践においてエラーが発生しやすい稀な症例において,堅牢なAIシステムの実現を目指している。
- 参考スコア(独自算出の注目度): 22.446549349132198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast ultrasound (BUS) is an essential tool for diagnosing breast lesions, with millions of examinations per year. However, publicly available high-quality BUS benchmarks for AI development are limited in data scale and annotation richness. In this work, we present BUS-CoT, a BUS dataset for chain-of-thought (CoT) reasoning analysis, which contains 11,439 images of 10,019 lesions from 4,838 patients and covers all 99 histopathology types. To facilitate research on incentivizing CoT reasoning, we construct the reasoning processes based on observation, feature, diagnosis and pathology labels, annotated and verified by experienced experts. Moreover, by covering lesions of all histopathology types, we aim to facilitate robust AI systems in rare cases, which can be error-prone in clinical practice.
- Abstract(参考訳): 乳房超音波(BUS)は乳腺病変の診断に必須のツールであり、年間数百万の検査がある。
しかし、AI開発のための高品質なBUSベンチマークは、データスケールとアノテーションの豊かさに制限されている。
本研究では,4,838例の10,019病変の11,439枚の画像と99種類の病理組織像を含む,チェーン・オブ・シント(CoT)推論のためのBUSデータセットであるBUS-CoTを提案する。
我々は,CoT推論のインセンティブ化の研究を容易にするために,経験豊富な専門家によって注釈付きで検証された観察,特徴,診断,病理学ラベルに基づく推論プロセスを構築した。
さらに,すべての病理組織型の病変を網羅することにより,稀な症例における堅牢なAIシステムの実現を目指す。
関連論文リスト
- An Agentic System for Rare Disease Diagnosis with Traceable Reasoning [69.46279475491164]
大型言語モデル(LLM)を用いた最初のまれな疾患診断エージェントシステムであるDeepRareを紹介する。
DeepRareは、まれな疾患の診断仮説を分類し、それぞれに透明な推論の連鎖が伴う。
このシステムは2,919の疾患に対して異常な診断性能を示し、1013の疾患に対して100%の精度を達成している。
論文 参考訳(メタデータ) (2025-06-25T13:42:26Z) - Pathobiological Dictionary Defining Pathomics and Texture Features: Addressing Understandable AI Issues in Personalized Liver Cancer; Dictionary Version LCP1.0 [0.8586471543865036]
本研究は肝癌の病理組織学的辞書(LCP1.0)を紹介する。
複雑な病的・放射線学的特徴(PFとRF)を臨床的に意味のある知見に翻訳するために設計されたフレームワークである。
AI出力と専門家の解釈の間に臨床的に検証されたブリッジを提供し、モデルの透明性とユーザビリティを高める。
論文 参考訳(メタデータ) (2025-05-20T21:23:13Z) - PathOrchestra: A Comprehensive Foundation Model for Computational Pathology with Over 100 Diverse Clinical-Grade Tasks [39.97710183184273]
本稿では,300Kの病理スライドからなるデータセット上で,自己教師型学習を通じて学習した多種多様な病理基盤モデルPathOrchestraを提案する。
このモデルは、61のプライベートデータセットと51のパブリックデータセットを組み合わせて、112の臨床的タスクで厳格に評価された。
PathOrchestraは27,755のWSIと9,415,729のROIで例外的なパフォーマンスを示し、47のタスクで0.950以上の精度を達成した。
論文 参考訳(メタデータ) (2025-03-31T17:28:02Z) - A Knowledge-enhanced Pathology Vision-language Foundation Model for Cancer Diagnosis [58.85247337449624]
本稿では,疾患知識を階層型セマンティックグループ内のアライメントに組み込む知識強化型視覚言語事前学習手法を提案する。
KEEPはゼロショット癌診断タスクにおいて最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-17T17:45:21Z) - Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence [83.02106623401885]
プライバシー保護型超音波基礎モデルであるUltraFedFMを提案する。
UltraFedFMは、9か国の16の分散医療機関にわたる連合学習を用いて、協調的に事前訓練されている。
疾患診断には0.927のレシーバ動作特性曲線、病変セグメント化には0.878のサイス類似係数を平均的に達成する。
論文 参考訳(メタデータ) (2024-11-25T13:40:11Z) - Large-scale cervical precancerous screening via AI-assisted cytology whole slide image analysis [11.148919818020495]
頸部がんは婦人科における主要な悪性腫瘍であり続けており、世界規模で女性の健康に永続的な脅威をもたらしている。
Whole Slide Image (WSI) による早期スクリーニングは、このがんの進行を予防し、生存率を向上させるために重要である。
しかし、病理学者の単体検査は、WSI内でレビューする必要がある膨大な数の細胞のために、必然的に偽陰性に悩まされる。
論文 参考訳(メタデータ) (2024-07-28T15:29:07Z) - AI-based Anomaly Detection for Clinical-Grade Histopathological Diagnostics [24.833696455985795]
臨床では、病気はほとんどないが、ほとんどの疾患は少ない。
現在のAIモデルは、これらの病気を見落としたり、分類ミスしたりする。
そこで本研究では,より頻度の低い疾患も検出するために,一般的な疾患からのトレーニングデータのみを必要とする深層異常検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T04:59:19Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
この課題には10,091個のパッチレベルのアノテーションと1300万以上のラベル付きピクセルが含まれる。
第一位チームは0.8413mIoUを達成した(腫瘍:0.8389、ストーマ:0.7931、正常:0.8919)。
論文 参考訳(メタデータ) (2022-04-13T15:27:05Z) - COVIDx-US -- An open-access benchmark dataset of ultrasound imaging data
for AI-driven COVID-19 analytics [116.6248556979572]
COVIDx-USは、新型コロナウイルス関連超音波画像データのオープンアクセスベンチマークデータセットです。
肺超音波93本と,SARS-CoV-2肺炎,非SARS-CoV-2肺炎,健康管理症例10,774本からなる。
論文 参考訳(メタデータ) (2021-03-18T03:31:33Z) - Accelerating COVID-19 Differential Diagnosis with Explainable Ultrasound
Image Analysis [7.471424290647929]
われわれは106本のビデオからなる新型コロナウイルスの肺超音波(US)データセットを公開している。
我々は、フレームベースの畳み込みニューラルネットワークを提案し、COVID-19 USビデオの感度0.98+0.04、特異度0.91+-08で正しく分類する。
論文 参考訳(メタデータ) (2020-09-13T23:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。