論文の概要: Predicting Depth Maps from Single RGB Images and Addressing Missing Information in Depth Estimation
- arxiv url: http://arxiv.org/abs/2509.17686v1
- Date: Mon, 22 Sep 2025 12:28:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.372185
- Title: Predicting Depth Maps from Single RGB Images and Addressing Missing Information in Depth Estimation
- Title(参考訳): 単一RGB画像からの深度マップの予測と深度推定における欠落情報への対応
- Authors: Mohamad Mofeed Chaar, Jamal Raiyn, Galia Weidl,
- Abstract要約: 我々は,1枚のRGB画像からDepth画像を生成するために,多層トレーニング手法を用いたアルゴリズムを開発した。
我々は,これらのギャップを補正するためにアルゴリズムを適用し,完全かつ正確なDepth画像を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth imaging is a crucial area in Autonomous Driving Systems (ADS), as it plays a key role in detecting and measuring objects in the vehicle's surroundings. However, a significant challenge in this domain arises from missing information in Depth images, where certain points are not measurable due to gaps or inconsistencies in pixel data. Our research addresses two key tasks to overcome this challenge. First, we developed an algorithm using a multi-layered training approach to generate Depth images from a single RGB image. Second, we addressed the issue of missing information in Depth images by applying our algorithm to rectify these gaps, resulting in Depth images with complete and accurate data. We further tested our algorithm on the Cityscapes dataset and successfully resolved the missing information in its Depth images, demonstrating the effectiveness of our approach in real-world urban environments.
- Abstract(参考訳): 深度イメージングは自律運転システム(ADS)において重要な領域であり、車両の周囲の物体を検出し測定する上で重要な役割を果たしている。
しかし、この領域における重要な課題は、ある点がピクセルデータのギャップや不整合のために測定できない奥行き画像の欠落から生じる。
我々の研究は、この課題を克服するための2つの重要な課題に対処する。
まず,1枚のRGB画像からDepth画像を生成するために,多層トレーニング手法を用いたアルゴリズムを開発した。
第2に,これらのギャップの修正にアルゴリズムを適用することにより,Depth画像に欠落する情報の問題に対処し,完全かつ正確なデータでDepth画像を生成する。
さらに、我々は、Cityscapesデータセット上でアルゴリズムを検証し、Depth画像の欠落した情報をうまく解決し、実際の都市環境における我々のアプローチの有効性を実証した。
関連論文リスト
- DepthLab: From Partial to Complete [80.58276388743306]
不足する値は、幅広いアプリケーションにわたる深度データにとって共通の課題である。
この作業は、イメージ拡散プリエントを利用した基礎深度塗装モデルであるDepthLabと、このギャップを埋めるものだ。
提案手法は,3Dシーンのインペイント,テキストから3Dシーン生成,DUST3Rによるスパースビュー再構成,LiDAR深度補完など,様々なダウンストリームタスクにおいて有用であることを示す。
論文 参考訳(メタデータ) (2024-12-24T04:16:38Z) - Depth-guided Texture Diffusion for Image Semantic Segmentation [47.46257473475867]
本稿では,この課題を効果的に解決するディープスガイド型テクスチャ拡散手法を提案する。
本手法は,テクスチャ画像を作成するために,エッジやテクスチャから低レベル特徴を抽出する。
この拡張深度マップを元のRGB画像と結合した特徴埋め込みに統合することにより,深度マップと画像との相違を効果的に橋渡しする。
論文 参考訳(メタデータ) (2024-08-17T04:55:03Z) - Temporal Lidar Depth Completion [0.08192907805418582]
PENetは, 再発の恩恵を受けるために, 最新の手法であるPENetをどう修正するかを示す。
提案アルゴリズムは,KITTI深度補完データセットの最先端結果を実現する。
論文 参考訳(メタデータ) (2024-06-17T08:25:31Z) - Deep Phase Coded Image Prior [34.84063452418995]
位相符号化イメージングは受動深度推定や拡大深度推定といった課題に対処する手法である。
深度推定やオールインフォーカスイメージングのための現在のディープラーニングベースの手法のほとんどは、高品質の深度マップを備えたトレーニングデータセットを必要とする。
本稿では,深度マップと全焦点画像の同時復元のためのDPCIP (Deep Phase Coded Image Prior) を提案する。
論文 参考訳(メタデータ) (2024-04-05T05:58:40Z) - PDC: Piecewise Depth Completion utilizing Superpixels [0.0]
現在のアプローチは、いくつかの既知の欠点のあるCNNベースのメソッドに依存することが多い。
深層学習なしで完全に機能する小説『Piecewise Depth Completion』(PDC)を提案する。
本評価では,提案した処理ステップがKITTIデータセットに与える影響と,本手法の全体的な性能に与える影響について述べる。
論文 参考訳(メタデータ) (2021-07-14T13:58:39Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z) - Dual Pixel Exploration: Simultaneous Depth Estimation and Image
Restoration [77.1056200937214]
本研究では,ぼかしと深度情報をリンクするDPペアの形成について検討する。
本稿では,画像の深さを共同で推定し,復元するためのエンドツーエンドDDDNet(DPベースのDepth and De Network)を提案する。
論文 参考訳(メタデータ) (2020-12-01T06:53:57Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
近年の研究では、畳み込みニューラルネットワーク(CNN)の構造が、自然画像に有利な強い先行性をもたらすことが示されている。
この前者はディープ・イメージ・先行 (DIP) と呼ばれ、画像の装飾や塗装といった逆問題において有効な正則化器である。
我々は、DIPの概念を深度画像に拡張し、色画像とノイズと不完全な目標深度マップから、CNNネットワーク構造を先行して復元された深度マップを再構成する。
論文 参考訳(メタデータ) (2020-01-21T21:56:01Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
単一のRGB画像から深度を推定することはコンピュータビジョンの基本的な課題である。
この作業では、異なる視点ではなく、フォーカスキューからの奥行きに依存しています。
我々は,KITTIとMake3Dデータセットの教師あり手法と同等な結果を提示し,教師なし学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-14T20:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。