論文の概要: Optimizing Inference in Transformer-Based Models: A Multi-Method Benchmark
- arxiv url: http://arxiv.org/abs/2509.17894v1
- Date: Mon, 22 Sep 2025 15:25:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.462367
- Title: Optimizing Inference in Transformer-Based Models: A Multi-Method Benchmark
- Title(参考訳): 変圧器モデルにおける推論の最適化:マルチメソッドベンチマーク
- Authors: Siu Hang Ho, Prasad Ganesan, Nguyen Duong, Daniel Schlabig,
- Abstract要約: 本研究は, プルーニング, 定量化, 知識蒸留, 簡易化といった技術について検討し, 性能に影響を与えずに計算オーバーヘッドを低減することを目的とした。
実験は、最先端の高速拡散変換器(fast-DiT)モデルに対する推論の最適化に関する洞察を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient inference is a critical challenge in deep generative modeling, particularly as diffusion models grow in capacity and complexity. While increased complexity often improves accuracy, it raises compute costs, latency, and memory requirements. This work investigates techniques such as pruning, quantization, knowledge distillation, and simplified attention to reduce computational overhead without impacting performance. The study also explores the Mixture of Experts (MoE) approach to further enhance efficiency. These experiments provide insights into optimizing inference for the state-of-the-art Fast Diffusion Transformer (fast-DiT) model.
- Abstract(参考訳): 効率的な推論は、特に拡散モデルがキャパシティと複雑さを増すにつれて、深層生成モデリングにおいて重要な課題である。
複雑さが増すことで精度が向上するが、計算コスト、レイテンシ、メモリ要求が増大する。
本研究は, プルーニング, 定量化, 知識蒸留, 簡易化といった技術について検討し, 性能に影響を与えずに計算オーバーヘッドを低減することを目的とした。
この研究は、効率をさらに高めるために、Mixture of Experts (MoE)アプローチについても検討している。
これらの実験は、最先端の高速拡散変換器(fast-DiT)モデルに対する推論の最適化に関する洞察を提供する。
関連論文リスト
- Noise Hypernetworks: Amortizing Test-Time Compute in Diffusion Models [57.49136894315871]
テストタイムスケーリングの新しいパラダイムは、推論モデルと生成視覚モデルにおいて驚くべきブレークスルーをもたらした。
本稿では,テスト時間スケーリングの知識をモデルに組み込むことの課題に対する1つの解決策を提案する。
拡散モデルにおいて、初期入力ノイズを変調するノイズハイパーネットワークにより、報酬誘導試験時間雑音の最適化を行う。
論文 参考訳(メタデータ) (2025-08-13T17:33:37Z) - Lightweight Task-Oriented Semantic Communication Empowered by Large-Scale AI Models [66.57755931421285]
大規模人工知能(LAI)モデルは、リアルタイム通信シナリオにおいて重大な課題を提起する。
本稿では,LAIモデルから知識を抽出・凝縮するために知識蒸留(KD)技術を活用することを提案する。
本稿では,反復推論の必要性を排除したプレストア圧縮機構を備えた高速蒸留法を提案する。
論文 参考訳(メタデータ) (2025-06-16T08:42:16Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [86.76714527437383]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - The Missing U for Efficient Diffusion Models [3.712196074875643]
拡散確率モデル(Diffusion Probabilistic Models)は、画像合成、ビデオ生成、分子設計などのタスクにおいて、記録破りのパフォーマンスをもたらす。
それらの能力にもかかわらず、その効率、特に逆過程では、収束速度が遅いことと計算コストが高いため、依然として課題である。
本研究では,連続力学系を利用した拡散モデルのための新しいデノナイジングネットワークの設計手法を提案する。
論文 参考訳(メタデータ) (2023-10-31T00:12:14Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。