論文の概要: Algorithms for Adversarially Robust Deep Learning
- arxiv url: http://arxiv.org/abs/2509.19100v1
- Date: Tue, 23 Sep 2025 14:48:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.907639
- Title: Algorithms for Adversarially Robust Deep Learning
- Title(参考訳): 逆ロバスト深層学習のためのアルゴリズム
- Authors: Alexander Robey,
- Abstract要約: 望ましいロバスト性を示すアルゴリズムの設計に向けた最近の進歩について論じる。
医用画像,分子識別,画像分類における最先端の一般化を実現するアルゴリズムを提案する。
我々は、堅牢な言語ベースのエージェントを設計するための進歩のフロンティアとして、新たな攻撃と防御を提案する。
- 参考スコア(独自算出の注目度): 58.656107500646364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the widespread use of deep learning models in safety-critical applications, ensuring that the decisions of such models are robust against adversarial exploitation is of fundamental importance. In this thesis, we discuss recent progress toward designing algorithms that exhibit desirable robustness properties. First, we discuss the problem of adversarial examples in computer vision, for which we introduce new technical results, training paradigms, and certification algorithms. Next, we consider the problem of domain generalization, wherein the task is to train neural networks to generalize from a family of training distributions to unseen test distributions. We present new algorithms that achieve state-of-the-art generalization in medical imaging, molecular identification, and image classification. Finally, we study the setting of jailbreaking large language models (LLMs), wherein an adversarial user attempts to design prompts that elicit objectionable content from an LLM. We propose new attacks and defenses, which represent the frontier of progress toward designing robust language-based agents.
- Abstract(参考訳): 安全クリティカルなアプリケーションでディープラーニングモデルが広く使われていることを考えると、そのようなモデルの判断が敵の搾取に対して堅牢であることを保証することは、基本的な重要性である。
本論では, 良好なロバスト性を示すアルゴリズムの設計に向けた最近の進歩について論じる。
まず、コンピュータビジョンにおける逆例の問題について議論し、新しい技術結果、訓練パラダイム、認証アルゴリズムを紹介する。
次に、ニューラルネットワークをトレーニングし、トレーニング分布の族から見当たらないテスト分布へと一般化させることを課題とする領域一般化の問題を考察する。
医用画像,分子識別,画像分類における最先端の一般化を実現するアルゴリズムを提案する。
最後に,大規模言語モデル (LLM) のジェイルブレイク設定について検討し,LLMから異種コンテンツを抽出するプロンプトの設計を試みる。
我々は、堅牢な言語ベースのエージェントを設計するための進歩のフロンティアを示す新しい攻撃と防御を提案する。
関連論文リスト
- Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Topological safeguard for evasion attack interpreting the neural
networks' behavior [0.0]
本研究は, 新規な回避攻撃検知装置の開発である。
入力サンプルが注入されたとき、モデルによって与えられるニューロンの活性化に関する情報に焦点を当てる。
この目的のためには、これらの情報をすべて検出器に導入するために、巨大なデータ前処理が必要である。
論文 参考訳(メタデータ) (2024-02-12T08:39:40Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Mitigating Adversarial Attacks in Deepfake Detection: An Exploration of
Perturbation and AI Techniques [1.0718756132502771]
敵の例は微妙な摂動で きれいな画像やビデオに 巧みに注入される
ディープフェイクは世論を操り、世論の評判を損なう強力なツールとして登場した。
この記事では、多面的な敵の例の世界を掘り下げ、ディープラーニングアルゴリズムを騙す能力の背後にある原則を解明する。
論文 参考訳(メタデータ) (2023-02-22T23:48:19Z) - Graph Neural Networks for Decentralized Multi-Agent Perimeter Defense [111.9039128130633]
我々は,防御者の地域認識とコミュニケーショングラフから行動へのマッピングを学習する模倣学習フレームワークを開発した。
学習ネットワークの性能を実証するために、異なるチームサイズと構成のシナリオで周辺防衛ゲームを実行します。
論文 参考訳(メタデータ) (2023-01-23T19:35:59Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - A Generative Model based Adversarial Security of Deep Learning and
Linear Classifier Models [0.0]
我々は,オートエンコーダモデルを用いた機械学習モデルに対する敵攻撃の軽減手法を提案する。
機械学習モデルに対する敵対的攻撃の背後にある主な考え方は、トレーニングされたモデルを操作することによって誤った結果を生成することである。
また、ディープニューラルネットワークから従来のアルゴリズムに至るまで、様々な攻撃手法に対するオートエンコーダモデルの性能についても紹介した。
論文 参考訳(メタデータ) (2020-10-17T17:18:17Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
本稿では,クラスタリングアルゴリズムのロバスト性をテストするために,ブラックボックス対逆攻撃法を提案する。
我々の攻撃は、SVM、ランダムフォレスト、ニューラルネットワークなどの教師付きアルゴリズムに対しても転送可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T18:19:31Z) - Opportunities and Challenges in Deep Learning Adversarial Robustness: A
Survey [1.8782750537161614]
本稿では,機械学習アルゴリズムの安全性を保証するために,強靭に訓練されたアルゴリズムを実装するための戦略について検討する。
我々は、敵の攻撃と防衛を分類し、ロバスト最適化問題をmin-max設定で定式化し、それを3つのサブカテゴリに分類する。
論文 参考訳(メタデータ) (2020-07-01T21:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。