論文の概要: A Gradient Flow Approach to Solving Inverse Problems with Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2509.19276v1
- Date: Tue, 23 Sep 2025 17:41:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.983195
- Title: A Gradient Flow Approach to Solving Inverse Problems with Latent Diffusion Models
- Title(参考訳): 潜時拡散モデルを用いた逆問題解法への勾配流法
- Authors: Tim Y. J. Wang, O. Deniz Akyildiz,
- Abstract要約: 我々は, 後方サンプリング問題を, 潜在空間におけるクルバック・リーブラー分岐の正規化ワッサーシュタイン勾配流として定式化する。
本稿では,StableDiffusion を用いた標準ベンチマークにおける本手法の性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving ill-posed inverse problems requires powerful and flexible priors. We propose leveraging pretrained latent diffusion models for this task through a new training-free approach, termed Diffusion-regularized Wasserstein Gradient Flow (DWGF). Specifically, we formulate the posterior sampling problem as a regularized Wasserstein gradient flow of the Kullback-Leibler divergence in the latent space. We demonstrate the performance of our method on standard benchmarks using StableDiffusion (Rombach et al., 2022) as the prior.
- Abstract(参考訳): 不適切な逆問題を解決するには、強力で柔軟な事前処理が必要である。
本稿では,DWGF (Diffusion-regularized Wasserstein Gradient Flow) と呼ばれる新しい学習自由な手法を用いて,事前学習した潜伏拡散モデルを活用することを提案する。
具体的には、潜在空間におけるクルバック・リーブラー分岐の正規化ワッサーシュタイン勾配流として後方サンプリング問題を定式化する。
本稿では,StableDiffusion (Rombach et al , 2022) を用いた標準ベンチマークにおける本手法の性能を示す。
関連論文リスト
- FlowDPS: Flow-Driven Posterior Sampling for Inverse Problems [51.99765487172328]
逆問題解決のための後部サンプリングは,フローを用いて効果的に行うことができる。
Flow-Driven Posterior Smpling (FlowDPS) は最先端の代替手段よりも優れています。
論文 参考訳(メタデータ) (2025-03-11T07:56:14Z) - G2D2: Gradient-Guided Discrete Diffusion for Inverse Problem Solving [83.56510119503267]
本稿では,従来の離散拡散に基づく生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々は、従来の離散拡散モデルの欠点を吸収状態で緩和するために、星型ノイズプロセスを用いる。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
Amortized Posterior Smplingは、逆問題における効率的な後方サンプリングのための新しい変分推論手法である。
本手法は,拡散モデルにより暗黙的に定義された変動分布と後続分布とのばらつきを最小限に抑えるために条件付き流れモデルを訓練する。
既存の手法とは異なり、我々のアプローチは教師なしであり、ペア化されたトレーニングデータを必要としておらず、ユークリッドと非ユークリッドの両方のドメインに適用できる。
論文 参考訳(メタデータ) (2024-07-25T09:53:12Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems [3.3969056208620128]
我々は, 高い復元品質を維持しつつ, 推論ステップの境界を1-2 NFEに推し進めることを提案する。
本手法は拡散型逆問題解法における新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-07-17T15:57:50Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Composing Normalizing Flows for Inverse Problems [89.06155049265641]
本稿では,2つの流れモデルの合成として,対象条件を推定する近似推論フレームワークを提案する。
本手法は,様々な逆問題に対して評価し,不確実性のある高品質な試料を作製することを示した。
論文 参考訳(メタデータ) (2020-02-26T19:01:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。