論文の概要: Faster Than SVD, Smarter Than SGD: The OPLoRA Alternating Update
- arxiv url: http://arxiv.org/abs/2509.19977v1
- Date: Wed, 24 Sep 2025 10:32:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.778506
- Title: Faster Than SVD, Smarter Than SGD: The OPLoRA Alternating Update
- Title(参考訳): SVDより速い。SGDより賢いOPLoRAの代替アップデート
- Authors: Abdulla Jasem Almansoori, Maria Ivanova, Andrey Veprikov, Aleksandr Beznosikov, Samuel Horváth, Martin Takáč,
- Abstract要約: Low-Rank Adaptation (LoRA) は、凍結重量の上の低ランク更新を学習することで、大きなモデルを微調整する。
ローランクプロジェクションによる完全なトレーニング(SVDLoRA)とLoRAファインチューニングの間にはまだギャップがあり、LoRAのステップをさらに改善できることを示している。
- 参考スコア(独自算出の注目度): 50.36542772932594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Rank Adaptation (LoRA) fine-tunes large models by learning low-rank updates on top of frozen weights, dramatically reducing trainable parameters and memory. However, there is still a gap between full training with low-rank projections (SVDLoRA) and LoRA fine-tuning, indicating that LoRA steps can be further improved. In this study, we propose OPLoRA, a memory-efficient optimizer that closes this gap by casting LoRA optimization as an interpretable sub-problem and solving it efficiently with alternating least squares updates, where 1-2 alternating steps are empirically found to be sufficient to closely match truncated SVD without ever forming the full matrix. We also retrieve the recently proposed preconditioning methods for LoRA as a special case. OPLoRA supports momentum by maintaining a low-rank estimate using the same subroutine (LoRSum) for computing the step, with a memory budget of 3 times the number of LoRA parameters (i.e., same as Adam). We also propose an experimental scaled variant that uses the K-FAC metric, which could be of interest. Across a linear task, MNIST, CIFAR-100, and RoBERTa-base (MNLI), OPLoRA consistently approaches SVDLoRA's performance using significantly less memory.
- Abstract(参考訳): Low-Rank Adaptation (LoRA) は、凍結重量の上の低ランク更新を学習することで、トレーニング可能なパラメータとメモリを劇的に削減する。
しかし、ローランクプロジェクションによる完全なトレーニング(SVDLoRA)とLoRAファインチューニングの間にはまだギャップがあり、LoRAのステップをさらに改善できることを示している。
本研究では,LoRA最適化を解釈可能なサブプロブレムとしてキャストし,最小二乗更新を交互に行うことで,このギャップを埋めるメモリ効率の良い最適化器OPLoRAを提案する。
また,最近提案されたLoRAのプレコンディショニング手法を特殊事例として検索する。
OPLoRAは、ステップの計算に同じサブルーチン(LoRSum)を使用する低ランクの見積もりを維持することで運動量をサポートし、メモリ予算はLoRAパラメータの3倍(すなわちAdamと同じ)である。
また、興味のあるK-FAC計量を用いて、実験的なスケールした変種も提案する。
線形タスク、MNIST、CIFAR-100、RoBERTa-base(MNLI)全体で、OPLoRAは、メモリをはるかに少なくしてSVDLoRAの性能に一貫してアプローチする。
関連論文リスト
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
低ランク適応(LoRA)の改良フレームワークであるResLoRAを提案する。
提案手法は,LoRAと比較してトレーニング可能なパラメータや推論コストを必要とせずに,より少ないトレーニングステップでより良い結果を得ることができる。
NLG,NLU,テキスト・ツー・イメージタスクの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-02-28T04:33:20Z) - PeriodicLoRA: Breaking the Low-Rank Bottleneck in LoRA Optimization [39.30090456724925]
監視された微調整は、下流タスクに大規模言語モデル(LLM)を適用する最も一般的な方法である。
完全な微調整には膨大な計算資源が必要である。
LoRAは最も広く使われている手法の1つであり、最適化過程は本質的に低次元であると仮定する。
論文 参考訳(メタデータ) (2024-02-25T16:43:41Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRAは、線形層に低ランクアダプタを導入することにより、ニューラルネットワーク内のトレーニング可能なパラメータの数を減らすテクニックである。
本稿では,LoRAの効率的な実装のためのRunLoRAフレームワークを提案する。
実験は、言語モデリングネットワーク上で最大28%のスピードアップを示す。
論文 参考訳(メタデータ) (2023-12-06T10:54:34Z) - LoRA-FA: Memory-efficient Low-rank Adaptation for Large Language Models
Fine-tuning [19.08716369943138]
本稿では,性能劣化やコストのかかる再計算を伴わずに,メモリ効率のよい微調整法であるLoRA-FAを提案する。
この結果から,LORA-FAは全パラメータの微調整やLORAと比較して,各タスクにまたがる精密調整の精度が常に高いことがわかった。
論文 参考訳(メタデータ) (2023-08-07T05:12:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。