論文の概要: Play by the Type Rules: Inferring Constraints for LLM Functions in Declarative Programs
- arxiv url: http://arxiv.org/abs/2509.20208v1
- Date: Wed, 24 Sep 2025 15:02:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.866905
- Title: Play by the Type Rules: Inferring Constraints for LLM Functions in Declarative Programs
- Title(参考訳): 型規則による遊び:宣言型プログラムにおけるLLM関数の制約の推論
- Authors: Parker Glenn, Alfy Samuel, Daben Liu,
- Abstract要約: 本稿では,LLM関数の適切な型付けを実現するための効率的な解を提案する。
マルチホップ質問応答データセットの精度は7%向上し、同等のソリューションよりも53%のレイテンシが向上した。
- 参考スコア(独自算出の注目度): 1.699783282638724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating LLM powered operators in declarative query languages allows for the combination of cheap and interpretable functions with powerful, generalizable language model reasoning. However, in order to benefit from the optimized execution of a database query language like SQL, generated outputs must align with the rules enforced by both type checkers and database contents. Current approaches address this challenge with orchestrations consisting of many LLM-based post-processing calls to ensure alignment between generated outputs and database values, introducing performance bottlenecks. We perform a study on the ability of various sized open-source language models to both parse and execute functions within a query language based on SQL, showing that small language models can excel as function executors over hybrid data sources. Then, we propose an efficient solution to enforce the well-typedness of LLM functions, demonstrating 7% accuracy improvement on a multi-hop question answering dataset with 53% improvement in latency over comparable solutions. We make our implementation available at https://github.com/parkervg/blendsql
- Abstract(参考訳): LLMを駆動する演算子を宣言型クエリ言語に統合することで、安価で解釈可能な関数と強力で一般化可能な言語モデル推論を組み合わせることができる。
しかし、SQLのようなデータベースクエリ言語を最適化した実行の恩恵を受けるために、生成された出力は型チェッカーとデータベースの内容の両方によって強制されるルールと一致しなければならない。
現在のアプローチでは、多くのLCMベースの後処理コールで構成され、生成された出力とデータベース値の整合性を確保し、パフォーマンスボトルネックを発生させることで、この課題に対処している。
我々は,SQLに基づくクエリ言語内で関数を解析および実行するための,さまざまなサイズのオープンソース言語モデルの能力について検討し,小規模言語モデルがハイブリッドデータソースよりも関数エグゼクタとして優れていることを示す。
そこで本研究では,LLM関数の適切な型付けを強制する効率的な解を提案し,マルチホップ質問応答データセットの精度を7%向上し,同等の解よりも53%のレイテンシ向上を実現した。
実装はhttps://github.com/parkervg/blendsqlで公開しています。
関連論文リスト
- Semantic Captioning: Benchmark Dataset and Graph-Aware Few-Shot In-Context Learning for SQL2Text [3.4688186440441893]
大規模言語モデル (LLM) は様々なNLPタスクにおいて顕著な性能を示した。
逆のプロセスは、コードを自然言語に翻訳し、セマンティックキャプションと呼ばれるが、あまり注目されていない。
本稿では,クエリの理解と説明に関する重要なニーズに対処するため,2Textのキャプションに着目した。
論文 参考訳(メタデータ) (2025-01-06T17:36:09Z) - Can the Rookies Cut the Tough Cookie? Exploring the Use of LLMs for SQL Equivalence Checking [15.42143912008553]
クエリ等価性チェックのためのSQLEquiQuestという,新しい,現実的で,十分に複雑なベンチマークを導入する。
我々は,様々なプロンプト戦略とテキスト内学習例を用いて,最先端のLLMを評価した。
解析の結果,LLMは等価性予測に強いバイアスを示し,非等価性対に対する性能は一貫して劣っていることがわかった。
論文 参考訳(メタデータ) (2024-12-07T06:50:12Z) - Relational Database Augmented Large Language Model [59.38841050766026]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクに優れる。
彼らは、トレーニングや教師付き微調整プロセスを通じてのみ、新しい知識を取り入れることができる。
この正確で最新のプライベート情報は、通常リレーショナルデータベースに格納される。
論文 参考訳(メタデータ) (2024-07-21T06:19:10Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - PURPLE: Making a Large Language Model a Better SQL Writer [14.627323505405327]
NL2タスクに必要な論理演算子構成を含む実演を検索することで精度を向上させるPURPLEを提案する。
PURPLEは、一般的なNL2ベンチマークの検証セット上で80.5%の正確な一致精度と87.8%の実行一致精度という、最先端の新たなパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-03-29T07:01:29Z) - Optimizing LLM Queries in Relational Data Analytics Workloads [50.95919232839785]
バッチデータ分析は、Large Language Models(LLMs)の急成長するアプリケーションである
LLMは、分類、エンティティ抽出、翻訳などの幅広い自然言語タスクを、大規模なデータセット上で実行可能にする。
本稿では,LLMコールによるリレーショナルデータ解析処理のコストを大幅に削減できる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - Fine-Tuning Language Models for Context-Specific SQL Query Generation [0.0]
本稿では,自然言語を tosql クエリに変換するタスクに対して,オープンソースの大規模言語モデル (LLM) を微調整する新しい手法を提案する。
我々は、Snowflake SQLとGoogleの方言に合わせて、合成データセットに基づいて訓練されたsqlクエリ生成に特化したモデルを紹介する。
提案手法では,GPT-4を用いてコンテキスト固有のデータセットを生成し,リソース制約を最適化するためにLoRa技術を用いて3つのオープンソースLCM(Starcoder Plus,Code-Llama,Mistral)を微調整する。
微調整モデルでは、ベースラインGPと比較してゼロショット設定では優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-04T18:04:27Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。