論文の概要: Intelligent Graybox Fuzzing via ATPG-Guided Seed Generation and Submodule Analysis
- arxiv url: http://arxiv.org/abs/2509.20808v1
- Date: Thu, 25 Sep 2025 06:46:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 20:58:12.735189
- Title: Intelligent Graybox Fuzzing via ATPG-Guided Seed Generation and Submodule Analysis
- Title(参考訳): ATPG誘導種子生成とサブモジュール解析によるインテリジェントグレーボックスファジリング
- Authors: Raghul Saravanan, Sudipta Paria, Aritra Dasgupta, Swarup Bhunia, Sai Manoj P D,
- Abstract要約: ハードウェアファジィングは、現代のハードウェア設計におけるセキュリティ欠陥を見つけるための重要なテクニックの1つである。
Coverage-Guided Fuzzing (CGF) 法はデザインをより効果的に探索するのに役立つが、ハードウェアの特定の部分に焦点を合わせるのに苦労する。
DirectFuzzのような既存のDGF(Directed Gray-box Fuzzing)技術は、ターゲットテストを生成することでこれを解決しようとしている。
本稿では, DGF アプローチに倣い, ファジングと自動テストパターン生成(ATPG)を組み合わせてより効率的なファジングを実現する新しいフレームワーク PROFUZZ を提案する。
- 参考スコア(独自算出の注目度): 5.029193774082768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hardware Fuzzing emerged as one of the crucial techniques for finding security flaws in modern hardware designs by testing a wide range of input scenarios. One of the main challenges is creating high-quality input seeds that maximize coverage and speed up verification. Coverage-Guided Fuzzing (CGF) methods help explore designs more effectively, but they struggle to focus on specific parts of the hardware. Existing Directed Gray-box Fuzzing (DGF) techniques like DirectFuzz try to solve this by generating targeted tests, but it has major drawbacks, such as supporting only limited hardware description languages, not scaling well to large circuits, and having issues with abstraction mismatches. To address these problems, we introduce a novel framework, PROFUZZ, that follows the DGF approach and combines fuzzing with Automatic Test Pattern Generation (ATPG) for more efficient fuzzing. By leveraging ATPG's structural analysis capabilities, PROFUZZ can generate precise input seeds that target specific design regions more effectively while maintaining high fuzzing throughput. Our experiments show that PROFUZZ scales 30x better than DirectFuzz when handling multiple target sites, improves coverage by 11.66%, and runs 2.76x faster, highlighting its scalability and effectiveness for directed fuzzing in complex hardware systems.
- Abstract(参考訳): ハードウェアファジィングは、幅広い入力シナリオをテストすることによって、現代のハードウェア設計におけるセキュリティ欠陥を見つけるための重要なテクニックの1つとして登場した。
主な課題の1つは、カバレッジを最大化し、検証をスピードアップする高品質なインプットシードを作ることである。
Coverage-Guided Fuzzing (CGF) 法はデザインをより効果的に探索するのに役立つが、ハードウェアの特定の部分に焦点を合わせるのに苦労する。
DirectFuzzのような既存のDGF(Directed Gray-box Fuzzing)技術は、ターゲットとするテストを生成することでこれを解決しようとするが、ハードウェア記述言語のみをサポートすること、大規模な回路にスケールしないこと、抽象化ミスマッチの問題など、大きな欠点がある。
これらの問題に対処するために、我々はDGFアプローチに従い、ファジングと自動テストパターン生成(ATPG)を組み合わせてより効率的なファジングを行う新しいフレームワーク PROFUZZ を導入する。
ATPGの構造解析機能を活用することで、PROFUZZは特定の設計領域をより効果的にターゲットする正確な入力種を生成することができる。
実験の結果,複数のターゲットサイトを扱う場合,PROFUZZはDirectFuzzよりも30倍スケールし,カバレッジが11.66%向上し,2.76倍高速に動作し,複雑なハードウェアシステムにおけるファズリングのスケーラビリティと有効性を強調した。
関連論文リスト
- LLAMA: Multi-Feedback Smart Contract Fuzzing Framework with LLM-Guided Seed Generation [56.84049855266145]
進化的突然変異戦略とハイブリッドテスト技術を統合したマルチフィードバックスマートコントラクトファジリングフレームワーク(LLAMA)を提案する。
LLAMAは、91%の命令カバレッジと90%のブランチカバレッジを達成すると同時に、148の既知の脆弱性のうち132が検出される。
これらの結果は、現実のスマートコントラクトセキュリティテストシナリオにおけるLAMAの有効性、適応性、実用性を強調している。
論文 参考訳(メタデータ) (2025-07-16T09:46:58Z) - Directed Greybox Fuzzing via Large Language Model [5.667013605202579]
HGFuzzerは、パス制約問題をターゲットコード生成タスクに変換する自動フレームワークである。
実世界の脆弱性20件についてHGFuzzerを評価し,最初の1分以内に11件を含む17件をトリガーした。
HGFuzzerは9つの既知の脆弱性を発見し、そのすべてにCVE IDが割り当てられた。
論文 参考訳(メタデータ) (2025-05-06T11:04:07Z) - FuzzWiz -- Fuzzing Framework for Efficient Hardware Coverage [2.1626093085892144]
FuzzWizという自動ハードウェアファジリングフレームワークを作成しました。
RTL設計モジュールのパース、C/C++モデルへの変換、アサーション、リンク、ファジングによるジェネリックテストベンチの作成を含む。
ベンチマークの結果,従来のシミュレーション回帰手法の10倍の速度でカバー範囲の約90%を達成できた。
論文 参考訳(メタデータ) (2024-10-23T10:06:08Z) - ISC4DGF: Enhancing Directed Grey-box Fuzzing with LLM-Driven Initial Seed Corpus Generation [32.6118621456906]
ディレクトグレーボックスファジィング(DGF)は、特定の脆弱性に焦点を絞って必須となっている。
ISC4DGFはLarge Language Models (LLMs) を用いてDGFのための最適化された初期シードコーパスを生成する
ISC4DGFは35.63倍のスピードアップと616.10倍の目標到達を達成した。
論文 参考訳(メタデータ) (2024-09-22T06:27:28Z) - G-Fuzz: A Directed Fuzzing Framework for gVisor [48.85077340822625]
G-FuzzはgVisor用のファジィフレームワークである。
G-Fuzzは業界に展開され、深刻な脆弱性を複数発見している。
論文 参考訳(メタデータ) (2024-09-20T01:00:22Z) - MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
ディープフェイクは、最近、国民の間で重大な信頼問題とセキュリティ上の懸念を提起した。
ViT法はトランスの表現性を生かし,優れた検出性能を実現する。
この研究は、汎用的でパラメータ効率のよいViTベースのアプローチであるFace Forgery Detection (MoE-FFD)のためのMixture-of-Expertsモジュールを導入する。
論文 参考訳(メタデータ) (2024-04-12T13:02:08Z) - Beyond Random Inputs: A Novel ML-Based Hardware Fuzzing [16.22481369547266]
ハードウェアファジィングは、現代のプロセッサのような大規模設計におけるセキュリティ脆弱性の探索と検出に有効なアプローチである。
この課題に対処するために,MLベースのハードウェアファザであるChatFuzzを提案する。
ChatFuzzは、最先端のファズーと比較して、わずか52分で75%の条件カバレッジ率を達成する。
論文 参考訳(メタデータ) (2024-04-10T09:28:54Z) - JustSTART: How to Find an RSA Authentication Bypass on Xilinx UltraScale(+) with Fuzzing [12.338137154105034]
7シリーズとUltraScale(+)FPGA構成エンジンのファジングについて検討する。
我々の目標は、FPGA構成エンジンの内部動作を分析し文書化するためのファジングの有効性を検討することである。
論文 参考訳(メタデータ) (2024-02-15T10:03:35Z) - Joint Attention-Guided Feature Fusion Network for Saliency Detection of
Surface Defects [69.39099029406248]
本稿では,エンコーダ・デコーダネットワークに基づく表面欠陥検出のための共同注意誘導型特徴融合ネットワーク(JAFFNet)を提案する。
JAFFNetは、主にJAFFモジュールをデコードステージに組み込んで、低レベルと高レベルの機能を適応的に融合させる。
SD- Saliency-900, Magnetic tile, and DAGM 2007 で行った実験から,本手法が他の最先端手法と比較して有望な性能を達成できたことが示唆された。
論文 参考訳(メタデータ) (2024-02-05T08:10:16Z) - ASFD: Automatic and Scalable Face Detector [129.82350993748258]
ASFD(Automatic and Scalable Face Detector)を提案する。
ASFDはニューラルアーキテクチャ検索技術の組み合わせと新たな損失設計に基づいている。
ASFD-D0は120FPS以上で動作し、MobilenetはVGA解像度の画像を撮影しています。
論文 参考訳(メタデータ) (2020-03-25T06:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。