論文の概要: FerretNet: Efficient Synthetic Image Detection via Local Pixel Dependencies
- arxiv url: http://arxiv.org/abs/2509.20890v1
- Date: Thu, 25 Sep 2025 08:28:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 20:58:12.791012
- Title: FerretNet: Efficient Synthetic Image Detection via Local Pixel Dependencies
- Title(参考訳): FerretNet: 局所的な画素依存性による効率的な合成画像検出
- Authors: Shuqiao Liang, Jian Liu, Renzhang Chen, Quanlong Guan,
- Abstract要約: FerretNetは1.1Mパラメータしか持たない軽量ニューラルネットワークで、効率的で堅牢な合成画像検出を提供する。
実験によると、フェレットネットは4クラスのProGANデータセットのみに訓練されており、平均精度は97.1%である。
- 参考スコア(独自算出の注目度): 10.597504007889063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing realism of synthetic images generated by advanced models such as VAEs, GANs, and LDMs poses significant challenges for synthetic image detection. To address this issue, we explore two artifact types introduced during the generation process: (1) latent distribution deviations and (2) decoding-induced smoothing effects, which manifest as inconsistencies in local textures, edges, and color transitions. Leveraging local pixel dependencies (LPD) properties rooted in Markov Random Fields, we reconstruct synthetic images using neighboring pixel information to expose disruptions in texture continuity and edge coherence. Building upon LPD, we propose FerretNet, a lightweight neural network with only 1.1M parameters that delivers efficient and robust synthetic image detection. Extensive experiments demonstrate that FerretNet, trained exclusively on the 4-class ProGAN dataset, achieves an average accuracy of 97.1% on an open-world benchmark comprising across 22 generative models, surpassing state-of-the-art methods by 10.6%.
- Abstract(参考訳): VAE、GAN、LCMといった先進的なモデルによって生成される合成画像のリアリズムの増加は、合成画像検出に重大な課題をもたらす。
この問題に対処するため, 生成プロセス中に導入された2種類のアーティファクトについて検討した。(1) 潜時分布偏差と(2) 局所的なテクスチャ, エッジ, 色遷移の不整合として現れる復号誘起スムージング効果である。
マルコフランダムフィールドに根ざした局所画素依存性(LPD)特性を活用して、隣接する画素情報を用いて合成画像を再構成し、テクスチャ連続性とエッジコヒーレンスにおける破壊を露呈する。
提案するフェレットネットは1.1Mパラメータしか持たない,効率的かつ堅牢な合成画像検出を実現する軽量ニューラルネットワークである。
大規模な実験により、FereetNetは4クラスのProGANデータセットのみに訓練され、22の生成モデルにまたがるオープンワールドベンチマークで平均97.1%の精度を達成し、最先端の手法を10.6%上回った。
関連論文リスト
- CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI [58.35348718345307]
実際の画像とAI生成画像を区別する現在の取り組みには、一般化が欠如している可能性がある。
既存のセマンティック機能を強化した新しいフレームワークCo-Spyを提案する。
また、5つの実画像データセットと22の最先端生成モデルからなる包括的データセットであるCo-Spy-Benchを作成します。
論文 参考訳(メタデータ) (2025-03-24T01:59:29Z) - Improving Synthetic Image Detection Towards Generalization: An Image Transformation Perspective [45.210030086193775]
現在の合成画像検出(SID)パイプラインは、主に普遍的なアーティファクト機能を構築することを目的としている。
3つの簡単な画像変換を持つ軽量かつ効率的な検出器SAFEを提案する。
我々のパイプラインは、新しい最先端のパフォーマンスを実現し、既存の手法に対する平均精度は4.5%、平均精度は2.9%向上した。
論文 参考訳(メタデータ) (2024-08-13T09:01:12Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
デジタル画像法医学は、画像認証と操作のローカライゼーションにおいて重要な役割を果たす。
本稿では,画素不整合アーチファクトの解析を通じて,一般化されたロバストな操作ローカライゼーションモデルを提案する。
実験により,本手法は固有の画素不整合偽指紋を抽出することに成功した。
論文 参考訳(メタデータ) (2023-09-30T02:54:51Z) - Randomize to Generalize: Domain Randomization for Runway FOD Detection [1.4249472316161877]
細い物体検出は、小型化、低解像度化、オクルージョン化、背景クラッタ、照明条件、被写体対画像比の小さいため困難である。
本稿では,SRIA(Synthetic Image Augmentation)の新たな2段階手法を提案する。
検出精度は初期41%からOODテストセットの92%に改善した。
論文 参考訳(メタデータ) (2023-09-23T05:02:31Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Explore the Power of Synthetic Data on Few-shot Object Detection [27.26215175101865]
Few-shot Object Detection (FSOD) は、トレーニングのいくつかの例に限って、新しいカテゴリのオブジェクト検出器を拡張することを目的としている。
近年のテキスト・画像生成モデルでは,高品質な画像を生成する上で有望な結果が得られている。
この研究は、最先端のテキスト・ツー・イメージ・ジェネレータから生成された合成画像がFSODタスクにどのように貢献するかを幅広く研究している。
論文 参考訳(メタデータ) (2023-03-23T12:34:52Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。