論文の概要: Differentiable Structure Learning for General Binary Data
- arxiv url: http://arxiv.org/abs/2509.21658v1
- Date: Thu, 25 Sep 2025 22:26:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.053585
- Title: Differentiable Structure Learning for General Binary Data
- Title(参考訳): 一般バイナリデータのための微分可能な構造学習
- Authors: Chang Deng, Bryon Aragam,
- Abstract要約: 離散変数間の任意の依存関係をキャプチャ可能な、微分可能な構造学習フレームワークを提案する。
学習問題を最も一般的な形式で1つの微分可能な最適化タスクとして定式化する。
実験結果から,本手法は離散データの複雑な関係を効果的に捉えていることが示された。
- 参考スコア(独自算出の注目度): 22.58355875817396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing methods for differentiable structure learning in discrete data typically assume that the data are generated from specific structural equation models. However, these assumptions may not align with the true data-generating process, which limits the general applicability of such methods. Furthermore, current approaches often ignore the complex dependence structure inherent in discrete data and consider only linear effects. We propose a differentiable structure learning framework that is capable of capturing arbitrary dependencies among discrete variables. We show that although general discrete models are unidentifiable from purely observational data, it is possible to characterize the complete set of compatible parameters and structures. Additionally, we establish identifiability up to Markov equivalence under mild assumptions. We formulate the learning problem as a single differentiable optimization task in the most general form, thereby avoiding the unrealistic simplifications adopted by previous methods. Empirical results demonstrate that our approach effectively captures complex relationships in discrete data.
- Abstract(参考訳): 離散データにおける微分可能な構造学習の既存の方法は、典型的には、データは特定の構造方程式モデルから生成されると仮定する。
しかし、これらの仮定は真のデータ生成プロセスとは一致しないかもしれない。
さらに、現在のアプローチは離散データに固有の複雑な依存構造を無視し、線形効果のみを考慮することが多い。
離散変数間の任意の依存関係をキャプチャ可能な、微分可能な構造学習フレームワークを提案する。
一般的な離散モデルは、純粋に観測データから識別できないが、互換性のあるパラメータと構造の完全な集合を特徴付けることが可能である。
さらに、軽度の仮定の下でマルコフ同値まで同定可能性を確立する。
学習問題を最も一般的な形式で1つの微分可能な最適化タスクとして定式化し、従来手法で採用されていた非現実的な単純化を回避する。
実験結果から,本手法は離散データの複雑な関係を効果的に捉えていることが示された。
関連論文リスト
- Causal Discovery on Dependent Binary Data [6.464898093190062]
本稿では,関係するバイナリデータに基づく因果グラフ学習のためのデコレーションに基づくアプローチを提案する。
我々は,潜在ユーティリティ変数のサンプルの生成とデコレーションを行うEMライクな反復アルゴリズムを開発した。
提案手法は因果グラフ学習の精度を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-12-28T21:55:42Z) - Model-free Estimation of Latent Structure via Multiscale Nonparametric Maximum Likelihood [13.175343048302697]
そこで我々は,そのような潜在構造がいつでも存在すると仮定することなく,その存在を推定するためのモデルフリーな手法を提案する。
アプリケーションとして,提案手法に基づくクラスタリングアルゴリズムを設計し,広範囲の潜伏構造を捕捉する手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-29T17:11:33Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
我々は,音楽のシーケンスなどの実践的な状況において,潜在目的に基づくデータポイントの選択的包摂が一般的である,と論じる。
選択構造はパラメトリックな仮定や介入実験なしで識別可能であることを示す。
また、他の種類の依存関係と同様に、選択構造を検知し、識別するための証明可能な正当性アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-29T20:56:34Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。