論文の概要: Mind the Missing: Variable-Aware Representation Learning for Irregular EHR Time Series using Large Language Models
- arxiv url: http://arxiv.org/abs/2509.22121v1
- Date: Fri, 26 Sep 2025 09:44:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.341975
- Title: Mind the Missing: Variable-Aware Representation Learning for Irregular EHR Time Series using Large Language Models
- Title(参考訳): 行方不明者の心:大言語モデルを用いた不規則EHR時系列の可変認識表現学習
- Authors: Jeong Eul Kwon, Joo Heung Yoon, Hyo Kyung Lee,
- Abstract要約: VITAL(VITAL)は、不規則にサンプリングされた生理的時系列から学習するのに適した可変対応大規模言語モデル(LLM)ベースのフレームワークである。
言語空間に重要な記号をリプログラミングし、LLMが時間的文脈を捉え、欠落した値に対する推論を可能にする。
高レベルの欠如の下では堅牢なパフォーマンスを維持しており、これは実際の臨床シナリオでよく見られる。
- 参考スコア(独自算出の注目度): 0.6554326244334866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Irregular sampling and high missingness are intrinsic challenges in modeling time series derived from electronic health records (EHRs),where clinical variables are measured at uneven intervals depending on workflow and intervention timing. To address this, we propose VITAL, a variable-aware, large language model (LLM) based framework tailored for learning from irregularly sampled physiological time series. VITAL differentiates between two distinct types of clinical variables: vital signs, which are frequently recorded and exhibit temporal patterns, and laboratory tests, which are measured sporadically and lack temporal structure. It reprograms vital signs into the language space, enabling the LLM to capture temporal context and reason over missing values through explicit encoding. In contrast, laboratory variables are embedded either using representative summary values or a learnable [Not measured] token, depending on their availability. Extensive evaluations on the benchmark datasets from the PhysioNet demonstrate that VITAL outperforms state of the art methods designed for irregular time series. Furthermore, it maintains robust performance under high levels of missingness, which is prevalent in real world clinical scenarios where key variables are often unavailable.
- Abstract(参考訳): 電子健康記録(EHR)から導かれる時系列のモデル化において、不規則サンプリングと高い欠落は本質的な課題であり、ワークフローや介入タイミングに応じて臨床変数を一定間隔で測定する。
そこで本研究では,不規則なサンプル時系列から学習に適した可変認識型大規模言語モデル (LLM) ベースのフレームワークであるVITALを提案する。
VITALは、頻繁に記録され、時間的パターンを示すバイタルサインと、散発的に測定され、時間的構造が欠如している実験室テストの2つの異なるタイプの臨床変数を区別する。
言語空間に重要な記号をリプログラミングすることで、LLMは明示的なエンコーディングを通じて時間的文脈を捉え、欠落した値を推論することができる。
対照的に、実験室変数は、その可用性に応じて、代表的な要約値または学習可能な[計測されていない]トークンを使用して埋め込まれます。
PhysioNetによるベンチマークデータセットの大規模な評価は、VITALが不規則な時系列のために設計された最先端の手法より優れていることを示している。
さらに、重要な変数がしばしば利用できない実世界の臨床シナリオでよく見られる、高いレベルの欠如の下で、堅牢なパフォーマンスを維持している。
関連論文リスト
- ProMedTS: A Self-Supervised, Prompt-Guided Multimodal Approach for Integrating Medical Text and Time Series [27.70300880284899]
大規模言語モデル (LLM) は、視覚の細かいタスクにおいて顕著な性能を示してきたが、医療分野におけるそれらの応用はいまだに探索されていない。
ProMedTSは、データ型を統一するために、プロンプト誘導学習を利用する、新しい自己教師型マルチモーダルフレームワークである。
実世界のデータセットを用いた診断タスクにおけるProMedTSの評価を行い,本手法が常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2025-02-19T07:56:48Z) - EMIT- Event-Based Masked Auto Encoding for Irregular Time Series [9.903108445512576]
データポイントが不均一な間隔で記録される不規則な時系列は、医療設定で一般的である。
この変動は、患者の健康の重大な変動を反映し、情報的臨床的意思決定に不可欠である。
不規則時系列に関する既存の自己教師型学習研究は、しばしば予測のような一般的な前提課題に依存している。
本稿では,不規則な時系列に対するイベントベースのマスキングである,新しい事前学習フレームワーク EMIT を提案する。
論文 参考訳(メタデータ) (2024-09-25T02:05:32Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time
Series [3.635056427544418]
本稿では,臨床時系列データを対象とした自己教師付き学習手法を提案する。
本手法は各レベルにおける損失関数の特定の形態に依存しない。
本手法を実世界の2つの臨床データセットで評価する。
論文 参考訳(メタデータ) (2023-07-20T14:49:58Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in
Disease Progression [82.85825388788567]
我々は、ラベル付き時系列データから予測時相パターンの表現型を発見するために、新しい時間的クラスタリング手法T-Phenotypeを開発した。
T-フェノタイプは, 評価ベースラインのすべてに対して, 最良の表現型発見性能を示す。
論文 参考訳(メタデータ) (2023-02-24T13:30:35Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Self-supervised Transformer for Multivariate Clinical Time-Series with
Missing Values [7.9405251142099464]
本稿ではSTraTS(Self-supervised Transformer for TimeSeries)モデルを提案する。
伝統的な密度行列表現を使う代わりに、時系列を観測三重項の集合として扱う。
これは、特にラベル付きデータが制限された場合、死亡予測の最先端手法よりも優れた予測性能を示す。
論文 参考訳(メタデータ) (2021-07-29T19:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。