論文の概要: Towards a more realistic evaluation of machine learning models for bearing fault diagnosis
- arxiv url: http://arxiv.org/abs/2509.22267v1
- Date: Fri, 26 Sep 2025 12:35:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.419263
- Title: Towards a more realistic evaluation of machine learning models for bearing fault diagnosis
- Title(参考訳): 断層診断のための機械学習モデルのより現実的な評価に向けて
- Authors: João Paulo Vieira, Victor Afonso Bauler, Rodrigo Kobashikawa Rosa, Danilo Silva,
- Abstract要約: 本稿では,振動を用いた軸受故障診断におけるデータ漏洩問題とそのモデル評価への影響について検討する。
本研究では, 軸受データ分割に着目したリークフリー評価手法を提案し, トレーニングやテストに使用する物理部品の重複を防止した。
CWRU、パダーボーン大学(PU)、オタワ大学(UORED-VAF)の3つの広く採用されているデータセットに対する方法論の評価を行った。
- 参考スコア(独自算出の注目度): 0.28873930745906956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable detection of bearing faults is essential for maintaining the safety and operational efficiency of rotating machinery. While recent advances in machine learning (ML), particularly deep learning, have shown strong performance in controlled settings, many studies fail to generalize to real-world applications due to methodological flaws, most notably data leakage. This paper investigates the issue of data leakage in vibration-based bearing fault diagnosis and its impact on model evaluation. We demonstrate that common dataset partitioning strategies, such as segment-wise and condition-wise splits, introduce spurious correlations that inflate performance metrics. To address this, we propose a rigorous, leakage-free evaluation methodology centered on bearing-wise data partitioning, ensuring no overlap between the physical components used for training and testing. Additionally, we reformulate the classification task as a multi-label problem, enabling the detection of co-occurring fault types and the use of prevalence-independent metrics such as Macro AUROC. Beyond preventing leakage, we also examine the effect of dataset diversity on generalization, showing that the number of unique training bearings is a decisive factor for achieving robust performance. We evaluate our methodology on three widely adopted datasets: CWRU, Paderborn University (PU), and University of Ottawa (UORED-VAFCLS). This study highlights the importance of leakage-aware evaluation protocols and provides practical guidelines for dataset partitioning, model selection, and validation, fostering the development of more trustworthy ML systems for industrial fault diagnosis applications.
- Abstract(参考訳): 回転機械の安全性と運転効率を維持するためには, 軸受欠陥の信頼性の高い検出が不可欠である。
機械学習(ML)の最近の進歩、特にディープラーニングは、制御された設定において強力な性能を示してきたが、多くの研究は、方法論的な欠陥、特にデータ漏洩により、現実世界のアプリケーションに一般化できなかった。
本稿では,振動を用いた軸受故障診断におけるデータ漏洩問題とそのモデル評価への影響について検討する。
我々は、セグメントワイドや条件ワイドのような共通のデータセット分割戦略が、パフォーマンス指標に急激な相関をもたらすことを実証した。
そこで本研究では、軸受データ分割に着目した厳密で漏れのない評価手法を提案し、トレーニングやテストに使用する物理部品の重複を確実にする。
さらに,分類タスクをマルチラベル問題として再編成し,共同起点型の検出とAUROCマクロのような有病率非依存メトリクスの利用を可能にする。
漏れの防止以外にも,データセットの多様性が一般化に与える影響についても検討し,トレーニング軸受の個数が堅牢性を達成する上で決定的な要因であることが示唆された。
我々は,CWRU,パダーボーン大学(PU),オタワ大学(UORED-VAFCLS)の3つの広く採用されているデータセットを用いて方法論を評価する。
本研究は, 漏洩認識評価プロトコルの重要性を強調し, データセット分割, モデル選択, バリデーションの実践的ガイドラインを提供し, 産業的故障診断のための信頼性の高いMLシステムの開発を促進する。
関連論文リスト
- From Physics to Machine Learning and Back: Part II - Learning and Observational Bias in PHM [52.64097278841485]
物理インフォームドモデリングとデータストラテジーによる学習と観察バイアスの導入は、モデルを物理的に一貫した信頼性のある予測へと導くことができるかを検討する。
メタラーニングや少数ショットラーニングなどの高速適応手法をドメイン一般化手法とともに検討する。
論文 参考訳(メタデータ) (2025-09-25T14:15:43Z) - Stress-Testing ML Pipelines with Adversarial Data Corruption [11.91482648083998]
規制当局は現在、ハイテイクシステムは現実的で相互依存的なエラーに耐えられるという証拠を要求している。
SAVAGEは依存性グラフとフレキシブルな汚いテンプレートを通じて、データ品質の問題を正式にモデル化するフレームワークです。
Savanageは、脆弱性のあるデータサブポピュレーションと微調整による汚職の深刻度を効率的に識別するために、双方向の最適化アプローチを採用している。
論文 参考訳(メタデータ) (2025-06-02T00:41:24Z) - The role of data partitioning on the performance of EEG-based deep learning models in supervised cross-subject analysis: a preliminary study [37.69303106863453]
ディープラーニングは、非常に非線形なパターンを効果的に発見することによって、脳波(EEG)データの解析を進めています。
ドメイン内に適切なデータパーティショニングとクロスバリデーションのための包括的なガイドラインは存在しない。
本稿では,脳波深層学習モデルの評価におけるデータ分割とクロスバリデーションの役割について,徹底的に検討する。
論文 参考訳(メタデータ) (2025-05-19T12:05:28Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
電気モーターの故障検出と診断は、産業システムの安全かつ信頼性の高い運転を保証する上で最も重要である。
マシン故障診断のための既存のデータ駆動ディープラーニングアプローチは、大量のラベル付きサンプルに大きく依存している。
ラベル付きサンプルを少ない量で活用する基礎モデルに基づくアクティブラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-27T03:25:12Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Probabilistic Bearing Fault Diagnosis Using Gaussian Process with
Tailored Feature Extraction [10.064000794573756]
転がり軸受は、過酷な環境下での長時間の運転により、様々な障害にさらされる。
現在の深層学習法は, 決定論的分類の形で軸受断層診断を行う。
本研究では,予測の不確実性を考慮した確率的故障診断フレームワークを開発した。
論文 参考訳(メタデータ) (2021-09-19T18:34:29Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning [3.8015092217142223]
モデルに依存しないメタラーニング(MAML)に基づく断層診断のための数発の学習フレームワークを提案する。
ケーススタディでは、提案したフレームワークは、シームズネットワークベースのベンチマーク研究よりも25%高い精度で全体の精度を達成している。
論文 参考訳(メタデータ) (2020-07-25T04:03:18Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
本稿では,トレーニングデータの密度と制御性能の関係を考察する。
データセットの品質尺度を定式化し、$rho$-gap と呼ぶ。
フィードバック線形化制御法に$rho$-gapを適用する方法を示す。
論文 参考訳(メタデータ) (2020-05-25T12:13:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。