論文の概要: Fine-Grained Detection of Context-Grounded Hallucinations Using LLMs
- arxiv url: http://arxiv.org/abs/2509.22582v2
- Date: Mon, 29 Sep 2025 12:02:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 14:13:47.67289
- Title: Fine-Grained Detection of Context-Grounded Hallucinations Using LLMs
- Title(参考訳): LLMを用いた環境周辺幻覚の微粒化検出
- Authors: Yehonatan Peisakhovsky, Zorik Gekhman, Yosi Mass, Liat Ein-Dor, Roi Reichart,
- Abstract要約: コンテキストグラウンドド・幻覚(Context-grounded hallucination)は、モデル出力がソーステキストに対して検証できない情報を含む場合である。
このような幻覚を局在化するためのLCMの適用性について検討する。
- 参考スコア(独自算出の注目度): 16.173245551933178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context-grounded hallucinations are cases where model outputs contain information not verifiable against the source text. We study the applicability of LLMs for localizing such hallucinations, as a more practical alternative to existing complex evaluation pipelines. In the absence of established benchmarks for meta-evaluation of hallucinations localization, we construct one tailored to LLMs, involving a challenging human annotation of over 1,000 examples. We complement the benchmark with an LLM-based evaluation protocol, verifying its quality in a human evaluation. Since existing representations of hallucinations limit the types of errors that can be expressed, we propose a new representation based on free-form textual descriptions, capturing the full range of possible errors. We conduct a comprehensive study, evaluating four large-scale LLMs, which highlights the benchmark's difficulty, as the best model achieves an F1 score of only 0.67. Through careful analysis, we offer insights into optimal prompting strategies for the task and identify the main factors that make it challenging for LLMs: (1) a tendency to incorrectly flag missing details as inconsistent, despite being instructed to check only facts in the output; and (2) difficulty with outputs containing factually correct information absent from the source - and thus not verifiable - due to alignment with the model's parametric knowledge.
- Abstract(参考訳): コンテキストグラウンドド・幻覚(Context-grounded hallucination)は、モデル出力がソーステキストに対して検証できない情報を含む場合である。
このような幻覚を局在化するためのLCMの適用性について検討する。
幻覚局所化のメタ評価のための確立されたベンチマークが欠如しているため、我々は、1000以上の例からなる挑戦的な人間のアノテーションを含むLLMに適したものを構築した。
我々は,LLMに基づく評価プロトコルでベンチマークを補完し,その品質を人間の評価で検証する。
既存の幻覚表現は、表現可能なエラーの種類を制限するため、自由形式のテキスト記述に基づく新しい表現を提案し、可能なエラーの全範囲をキャプチャする。
我々は総合的な研究を行い、ベンチマークの難易度を強調する4つの大規模LCMを評価し、最良のモデルがF1スコアの0.67を達成した。
注意深い分析を通じて、我々は、タスクの最適な促進戦略に関する洞察を提供し、LLMにとって困難となる主要な要因を識別する:(1) 失明した詳細を、アウトプット内の事実のみをチェックするよう指示されたにもかかわらず、正しくフラグ付けする傾向、(2) 情報源から欠落した事実的正当な情報を含む出力の難しさ、すなわち、モデルのパラメトリック知識と整合して検証できないこと。
関連論文リスト
- Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - An In-depth Evaluation of Large Language Models in Sentence Simplification with Error-based Human Assessment [9.156064716689833]
本研究は, 評価の信頼性を確保しつつ, LLMの性能に関する詳細な知見を提供する。
我々は、GPT-4、Qwen2.5-72B、Llama-3.2-3Bを含む、クローズドソースとオープンソースの両方のLLMを選択する。
その結果, LLM は従来と比べ, 誤った単純化出力が少ないことがわかった。
論文 参考訳(メタデータ) (2024-03-08T00:19:24Z) - TofuEval: Evaluating Hallucinations of LLMs on Topic-Focused Dialogue Summarization [29.49641083851667]
様々な大きさのLPMによって生成される話題中心の対話要約に関する新しい評価ベンチマークを提案する。
我々はこれらの要約の事実整合性に関する二項文レベルの人文アノテーションと、事実整合性のある文章の詳細な説明を提供する。
論文 参考訳(メタデータ) (2024-02-20T18:58:49Z) - "Knowing When You Don't Know": A Multilingual Relevance Assessment Dataset for Robust Retrieval-Augmented Generation [90.09260023184932]
Retrieval-Augmented Generation (RAG) は、外部の知識源を活用して、事実の幻覚を減らすことで、Large Language Model (LLM) を出力する。
NoMIRACLは18言語にまたがるRAGにおけるLDM堅牢性を評価するための人為的アノテーション付きデータセットである。
本研究は,<i>Halucination rate</i>,<i>Halucination rate</i>,<i>Halucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sr。
論文 参考訳(メタデータ) (2023-12-18T17:18:04Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD は LLM からファクトコンフリクトの幻覚を検出するために設計されたベンチマークである。
FactCHDは、バニラ、マルチホップ、比較、セット操作など、さまざまな事実パターンにまたがる多様なデータセットを備えている。
Llama2 に基づくツール強化 ChatGPT と LoRA-tuning による反射的考察を合成する Truth-Triangulator を提案する。
論文 参考訳(メタデータ) (2023-10-18T16:27:49Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
大きな言語モデル(LLM)は幻覚を発生させ、ミッションクリティカルなタスクにデプロイすると大きなダメージを与える可能性がある。
本稿では,逆検証に基づく自己チェック手法を提案し,ゼロリソース方式で事実誤りを自動的に検出する。
提案手法と既存のゼロリソース検出手法を2つのデータセット上で実証的に評価した。
論文 参考訳(メタデータ) (2023-10-10T10:14:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。