論文の概要: Robust Object Detection for Autonomous Driving via Curriculum-Guided Group Relative Policy Optimization
- arxiv url: http://arxiv.org/abs/2509.22688v1
- Date: Fri, 19 Sep 2025 02:08:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 05:29:07.79063
- Title: Robust Object Detection for Autonomous Driving via Curriculum-Guided Group Relative Policy Optimization
- Title(参考訳): カリキュラム型グループ相対ポリシー最適化による自律走行のためのロバスト物体検出
- Authors: Xu Jia,
- Abstract要約: MLLM(Multimodal Large Language Models)は、視覚言語推論において優れているが、しばしば構造化された知覚タスクと競合する。
本稿では,カリキュラムベースのデータスケジューリングと難易度を考慮したフィルタリングにより,グループ相対政策最適化を強化した強化学習フレームワークを提案する。
本研究は,頑健かつ解釈可能なマルチモーダル検出へのスケーラブルな経路として,構造化データキュリキュラを用いた強化駆動型最適化に注目した。
- 参考スコア(独自算出の注目度): 13.039255434549299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) excel in vision-language reasoning but often struggle with structured perception tasks requiring precise localization and robustness. We propose a reinforcement learning framework that augments Group Relative Policy Optimization (GRPO) with curriculum-based data scheduling and difficulty-aware filtering. This approach stabilizes optimization under sparse, noisy rewards and enables progressive adaptation to complex samples. Evaluations on autonomous driving benchmarks demonstrate substantial improvements in detection accuracy and robustness. Ablation studies confirm the importance of reward design, KL regularization, and curriculum pacing for convergence stability and generalization. Our findings highlight reinforcement-driven optimization with structured data curricula as a scalable path toward robust and interpretable multimodal detection.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は視覚言語推論に優れるが、正確なローカライゼーションとロバスト性を必要とする構造的認識タスクにしばしば苦労する。
本稿では,カリキュラムベースのデータスケジューリングと難解なフィルタリングにより,グループ相対政策最適化(GRPO)を強化した強化学習フレームワークを提案する。
このアプローチは、スパースでノイズの多い報酬の下で最適化を安定化し、複雑なサンプルへのプログレッシブ適応を可能にする。
自動走行ベンチマークの評価は、検出精度とロバスト性を大幅に改善したことを示している。
アブレーション研究は、収束安定性と一般化のための報酬設計、KL正規化、カリキュラムペーシングの重要性を裏付けている。
本研究は,頑健かつ解釈可能なマルチモーダル検出へのスケーラブルな経路として,構造化データキュリキュラを用いた強化駆動型最適化に注目した。
関連論文リスト
- CurES: From Gradient Analysis to Efficient Curriculum Learning for Reasoning LLMs [53.749193998004166]
カリキュラム学習は,大規模言語モデルの学習効率を高める上で重要な役割を担っている。
収束を加速し,計算オーバーヘッドを最小限に抑えるためにベイズ後続推定を用いた効率的な学習法であるCurESを提案する。
論文 参考訳(メタデータ) (2025-10-01T15:41:27Z) - Stabilizing Policy Gradients for Sample-Efficient Reinforcement Learning in LLM Reasoning [77.92320830700797]
強化学習は、大規模言語モデルの推論機能を実現する上で中心的な役割を果たしてきた。
本稿では,ポリシー更新時の曲率情報を追跡し,活用するトラクタブルな計算フレームワークを提案する。
アルゴリズムであるCurvature-Aware Policy Optimization (CAPO)は、不安定な更新に寄与するサンプルを特定し、それらをマスクアウトする。
論文 参考訳(メタデータ) (2025-10-01T12:29:32Z) - ACPO: Adaptive Curriculum Policy Optimization for Aligning Vision-Language Models in Complex Reasoning [17.928214942495412]
ACPOは、安定的で、準政治的な探索段階から、効率的で、非政治的な搾取段階へ、原則的な移行を編成する動的カリキュラムを採用している。
我々は、MathVista、LogicVista、MMMU-Proなど、挑戦的なマルチモーダル推論ベンチマークのスイートで広範な実験を行う。
その結果,ACPOはDAPOやPAPOなどの強いベースラインを一貫して上回り,最先端性能,収束の促進,訓練安定性の向上を実現している。
論文 参考訳(メタデータ) (2025-10-01T09:11:27Z) - Sycophancy Mitigation Through Reinforcement Learning with Uncertainty-Aware Adaptive Reasoning Trajectories [58.988535279557546]
適応推論トラジェクトリを用いたtextbf sycophancy Mitigation を提案する。
SMARTは,分布外の入力に対して強い性能を維持しながら,サイコファンティクスの挙動を著しく低下させることを示した。
論文 参考訳(メタデータ) (2025-09-20T17:09:14Z) - TableMind: An Autonomous Programmatic Agent for Tool-Augmented Table Reasoning [10.267950603662776]
TableMindは、データ分析と正確な数値推論のために、セキュアなサンドボックス環境で、マルチターンツールの実行、書き込み、実行を自律的に実行する、ツール統合テーブル推論エージェントである。
これらの機能を実現するために、我々は強力な事前学習言語モデルの上に構築された2段階の微調整パラダイムを採用する。
論文 参考訳(メタデータ) (2025-09-08T02:00:31Z) - COPO: Consistency-Aware Policy Optimization [17.328515578426227]
強化学習は、複雑な問題解決タスクにおける大規模言語モデル(LLM)の推論能力を大幅に向上させた。
近年、DeepSeek R1の導入により、ルールベースの報酬をコンピューティングの利点関数の低コストな代替手段として活用し、ポリシー最適化を導くことへの関心が高まっている。
本稿では,結果整合性に基づくグローバルな報酬構造を導入する,整合性を考慮したポリシー最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-06T07:05:18Z) - VerIPO: Cultivating Long Reasoning in Video-LLMs via Verifier-Gudied Iterative Policy Optimization [59.39976343879587]
VerIPOは、深く長期的な推論チェーンを生成するためのビデオLLMの能力を徐々に改善することを目指している。
トレーニングループはGRPOの拡張検索とDPOのターゲット最適化の恩恵を受けている。
我々の訓練されたモデルは、大規模命令調整ビデオ-LLMの直接推定を超えている。
論文 参考訳(メタデータ) (2025-05-25T06:41:28Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
大規模言語モデル(LLM)は様々なタスクで大きな成功を収めており、生成品質をさらに向上させるためには微調整が必要である場合もある。
これらの課題に対処する直接的な解決策は、教師なしの下流タスクから高信頼のデータを生成することである。
本稿では,プロンプトと全体的な擬似スーパービジョンを両立させる新しい手法,擬似教師付きデモアライメント・アライメント・アライメント・プロンプト・最適化(PAPO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - Enhancing Visual-Language Modality Alignment in Large Vision Language Models via Self-Improvement [102.22911097049953]
大規模視覚言語モデル(LVLM)は、視覚的質問応答および推論タスクにおいて印象的な結果を得た。
既存の手法は、しばしば外部モデルやデータに依存し、制御不能で不安定なアライメント結果をもたらす。
本稿では,外部依存を伴わない視覚的・言語的モダリティアライメントを向上させる自己改善フレームワークSIMAを提案する。
論文 参考訳(メタデータ) (2024-05-24T23:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。