論文の概要: Infusing Theory of Mind into Socially Intelligent LLM Agents
- arxiv url: http://arxiv.org/abs/2509.22887v1
- Date: Fri, 26 Sep 2025 20:07:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:18.92488
- Title: Infusing Theory of Mind into Socially Intelligent LLM Agents
- Title(参考訳): 社会的に知能なLLMエージェントへの心の理論の注入
- Authors: EunJeong Hwang, Yuwei Yin, Giuseppe Carenini, Peter West, Vered Shwartz,
- Abstract要約: 心の理論 (ToM) は人間の社会知性の重要な側面である。
ToMを明示的に用いたソーシャルエージェントは対話性が向上し、より効果的に目標を達成できることを示す。
ToMA(Tomagent)は,ToMに着目した対話エージェントである。
- 参考スコア(独自算出の注目度): 31.88529787413754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Theory of Mind (ToM)-an understanding of the mental states of others-is a key aspect of human social intelligence, yet, chatbots and LLM-based social agents do not typically integrate it. In this work, we demonstrate that LLMs that explicitly use ToM get better at dialogue, achieving goals more effectively. After showing that simply prompting models to generate mental states between dialogue turns already provides significant benefit, we further introduce ToMAgent (ToMA), a ToM-focused dialogue agent. ToMA is trained by pairing ToM with dialogue lookahead to produce mental states that are maximally useful for achieving dialogue goals. Experiments on the Sotopia interactive social evaluation benchmark demonstrate the effectiveness of our method over a range of baselines. Comprehensive analysis shows that ToMA exhibits more strategic, goal-oriented reasoning behaviors, which enable long-horizon adaptation, while maintaining better relationships with their partners. Our results suggest a step forward in integrating ToM for building socially intelligent LLM agents.
- Abstract(参考訳): 心の理論 (ToM) 他者の精神状態の理解は、人間の社会的知能の重要な側面であるが、チャットボットとLLMベースのソーシャルエージェントは通常、それを統合しない。
本研究では,ToM を明示的に用いた LLM の対話性が向上し,より効率的に目標を達成できることを実証する。
ToMA(ToMA)という対話エージェントを導入することで,対話間のメンタルな状態の生成をモデルに促すことが,すでに大きなメリットをもたらしていることを示す。
ToMAは、対話目標を達成するのに最適な精神状態を生成するために、ToMと対話ルックアヘッドを組み合わせることで訓練される。
ソトピアの対話型社会評価ベンチマーク実験は,本手法の有効性を示す。
包括的分析により、ToMAはより戦略的、ゴール指向の推論行動を示し、長期的適応を可能にし、パートナーとのより良い関係を維持していることが示された。
以上の結果から,社会的にインテリジェントなLLMエージェント構築のためのToM統合への一歩が示唆された。
関連論文リスト
- MOMENTS: A Comprehensive Multimodal Benchmark for Theory of Mind [41.188841829937466]
MoMentS (Multimodal Mental States) は、社会的にインテリジェントなマルチモーダルエージェントを構築するためのベンチマークである。
MoMentSには、7つの異なるToMカテゴリにまたがる2300以上の多重選択質問が含まれている。
いくつかのMLLMを評価し、ビジョンは一般的に性能を改善するが、モデルがそれを効果的に統合するのに苦戦していることを発見した。
論文 参考訳(メタデータ) (2025-07-06T15:06:30Z) - SocialEval: Evaluating Social Intelligence of Large Language Models [70.90981021629021]
ソーシャルインテリジェンス(英語版) (SI) は、社会的目標を達成するために社会的相互作用をナビゲートする際に賢明に行動する対人能力を持つ人間を装備する。
結果指向の目標達成評価とプロセス指向の対人能力評価という,運用評価パラダイムを提示する。
スクリプトベースのバイリンガルSIベンチマークであるSocialEvalを提案する。
論文 参考訳(メタデータ) (2025-06-01T08:36:51Z) - MetaMind: Modeling Human Social Thoughts with Metacognitive Multi-Agent Systems [20.58639538648743]
メタ認知の心理学理論に触発されたマルチエージェントフレームワークであるMetaMindを紹介する。
我々のフレームワークは3つの挑戦的なベンチマークで最先端のパフォーマンスを実現し、実世界の社会的シナリオは35.7%改善した。
この研究は、共感的対話や文化的に敏感な相互作用に応用して、人間のような社会知性に向けてAIシステムを前進させる。
論文 参考訳(メタデータ) (2025-05-25T02:32:57Z) - PersuasiveToM: A Benchmark for Evaluating Machine Theory of Mind in Persuasive Dialogues [27.231701486961917]
本稿では,大規模言語モデルのマインド能力理論を評価するためのベンチマークであるPersuasiveToMを提案する。
フレームワークには、ToM ReasoningとToM Applicationという2つのコアタスクが含まれています。
PersuasiveToMの目的は、複雑な心理的活動に焦点を当てたLSMのToM推論能力を効果的に評価することである。
論文 参考訳(メタデータ) (2025-02-28T13:04:04Z) - Large Language Models as Theory of Mind Aware Generative Agents with Counterfactual Reflection [31.38516078163367]
ToM-agentは、オープンドメインの会話相互作用において、LLMベースの生成エージェントがToMをシミュレートできるように設計されている。
ToM-Adntは、精神状態に対するエージェントの認識のエミュレーションを促進するため、精神状態からの信頼を解き放つ。
以上の結果から,ToM-agentは,意味的情緒的支援や意思決定に限らず,相手の行動の根底にある要因を把握できることが示唆された。
論文 参考訳(メタデータ) (2025-01-26T00:32:38Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - SOTOPIA-$π$: Interactive Learning of Socially Intelligent Language Agents [73.35393511272791]
本稿では,対話型学習手法であるSOTOPIA-$pi$を提案する。
この手法は,大規模言語モデル(LLM)の評価に基づいて,フィルタリングされた社会的相互作用データに対する行動クローニングと自己強化トレーニングを活用する。
論文 参考訳(メタデータ) (2024-03-13T17:17:48Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
大規模言語モデル(LLM)は、多くの自然言語タスクに対する強力で一般的な解決策として登場した。
しかしながら、言語生成の最も重要なアプリケーションの多くは対話的であり、エージェントは望ましい結果に達するために相手と話し合わなければならない。
本研究では,そのような目標指向対話に対して,RLでLLMを適応させる新しい手法について検討する。
論文 参考訳(メタデータ) (2023-11-09T18:45:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。