論文の概要: Localized Uncertainty Quantification in Random Forests via Proximities
- arxiv url: http://arxiv.org/abs/2509.22928v1
- Date: Fri, 26 Sep 2025 20:53:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:18.940617
- Title: Localized Uncertainty Quantification in Random Forests via Proximities
- Title(参考訳): 確率によるランダム林の局在不確かさ定量化
- Authors: Jake S. Rhodes, Scott D. Brown, J. Riley Wilkinson,
- Abstract要約: 機械学習では、不確実性定量化はモデルの予測の信頼性を評価するのに役立つ。
従来のアプローチでは予測精度が重視されることが多いが、不確実性対策の導入に焦点が当てられている。
自然発生試験セットと類似度尺度(確率)をランダム林の副産物と見なす新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 1.0195618602298684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In machine learning, uncertainty quantification helps assess the reliability of model predictions, which is important in high-stakes scenarios. Traditional approaches often emphasize predictive accuracy, but there is a growing focus on incorporating uncertainty measures. This paper addresses localized uncertainty quantification in random forests. While current methods often rely on quantile regression or Monte Carlo techniques, we propose a new approach using naturally occurring test sets and similarity measures (proximities) typically viewed as byproducts of random forests. Specifically, we form localized distributions of OOB errors around nearby points, defined using the proximities, to create prediction intervals for regression and trust scores for classification. By varying the number of nearby points, our intervals can be adjusted to achieve the desired coverage while retaining the flexibility that reflects the certainty of individual predictions. For classification, excluding points identified as unclassifiable by our method generally enhances the accuracy of the model and provides higher accuracy-rejection AUC scores than competing methods.
- Abstract(参考訳): 機械学習では、不確実性定量化はモデル予測の信頼性を評価するのに役立つ。
従来のアプローチは予測精度を強調することが多いが、不確実性対策の導入に焦点が当てられている。
本稿では,ランダム林における局所的不確実性定量化について述べる。
現在の手法は、しばしば量子回帰法やモンテカルロ法に頼っているが、自然に生じるテストセットと類似度(確率)を用いて、通常ランダムな森林の副産物と見なされる新しいアプローチを提案する。
具体的には,確率を用いて定義した近点付近のOOB誤差の局所分布を定式化し,回帰と信頼スコアの予測間隔を作成する。
近傍の点数を変えることで、それぞれの予測の確実性を反映した柔軟性を維持しながら、所望のカバレッジを達成するために間隔を調整できる。
分類において,本手法では分類不能と判断される点を除くと,モデルの精度が向上し,競合手法よりも精度の高いAUCスコアが得られる。
関連論文リスト
- Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests [0.0]
予測間隔で機械学習モデルをペアリングするための有望な方法として、コンフォーマル予測が登場した。
本研究では,深部回帰林から得られた分散度を算出し,各試料の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T19:09:53Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Uncertainty Estimates of Predictions via a General Bias-Variance
Decomposition [7.811916700683125]
本稿では,適切なスコアに対するバイアス分散分解を導入し,分散項としてブレグマン情報を導出する。
モデルアンサンブルや信頼領域を含む下流タスクにおけるこの分解の実践的妥当性を示す。
論文 参考訳(メタデータ) (2022-10-21T21:24:37Z) - Calibrated Selective Classification [34.08454890436067]
そこで我々は,「不確か」な不確実性のある例を拒否する手法を提案する。
本稿では,選択的校正モデル学習のためのフレームワークを提案する。そこでは,任意のベースモデルの選択的校正誤差を改善するために,個別のセレクタネットワークを訓練する。
われわれは,複数画像分類と肺癌リスク評価におけるアプローチの実証的効果を実証した。
論文 参考訳(メタデータ) (2022-08-25T13:31:09Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。