論文の概要: Multifractal features of multimodal cardiac signals: Nonlinear dynamics of exercise recovery
- arxiv url: http://arxiv.org/abs/2509.23317v1
- Date: Sat, 27 Sep 2025 14:04:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.157492
- Title: Multifractal features of multimodal cardiac signals: Nonlinear dynamics of exercise recovery
- Title(参考訳): マルチモーダル心信号のマルチフラクタル特性 : 運動回復の非線形ダイナミクス
- Authors: A. Maluckov, D. Stojanovic, M. Miletic, Lj. Hadzievski, J. Petrovic,
- Abstract要約: 心電図を用いたマルチモーダルバイオシグナーを用いた運動負荷後の健常心活動の回復動態について検討した。
5つの教師付き分類アルゴリズムが評価され、小さな不均衡なデータセットの回復状態を識別した。
以上の結果から,マルチフラクタル解析とマルチモーダルセンシングを併用することにより,回復と非非線形診断法を特徴付ける信頼性の高い特徴が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the recovery dynamics of healthy cardiac activity after physical exertion using multimodal biosignals recorded with a polycardiograph. Multifractal features derived from the singularity spectrum capture the scale-invariant properties of cardiovascular regulation. Five supervised classification algorithms - Logistic Regression (LogReg), Suport Vector Machine with RBF kernel (SVM-RBF), k-Nearest Neighbors (kNN), Decision Tree (DT), and Random Forest (RF) - were evaluated to distinguish recovery states in a small, imbalanced dataset. Our results show that multifractal analysis, combined with multimodal sensing, yields reliable features for characterizing recovery and points toward nonlinear diagnostic methods for heart conditions.
- Abstract(参考訳): 心電図を用いたマルチモーダルバイオシグナーを用いた運動負荷後の健常心活動の回復動態について検討した。
特異スペクトルから導かれる多フラクタル的特徴は、心血管調節のスケール不変特性を捉えている。
RBFカーネル(SVM-RBF)、k-Nearest Neighbors(kNN)、Decision Tree(DT)、Random Forest(RF)の5つの教師付き分類アルゴリズムを用いて、小さな不均衡データセットにおける回復状態の識別を行った。
以上の結果から,マルチフラクタル解析とマルチモーダルセンシングを併用することにより,回復と非非線形診断法を特徴付ける信頼性の高い特徴が得られた。
関連論文リスト
- Latent Representations of Intracardiac Electrograms for Atrial Fibrillation Driver Detection [37.72464514643607]
本研究では,非教師付き特徴抽出のための畳み込みオートエンコーダを用いたディープラーニングフレームワークを提案する。
心房電気活動の潜在的表現は、EMG分析の特徴づけと自動化を可能にする。
提案手法は, リアルタイムに動作可能であり, 臨床解剖学的マッピングシステムに統合することにより, アブレーション中の不整脈領域の同定を支援することができる。
論文 参考訳(メタデータ) (2025-07-24T09:40:24Z) - Sensing Cardiac Health Across Scenarios and Devices: A Multi-Modal Foundation Model Pretrained on Heterogeneous Data from 1.7 Million Individuals [36.08910150609342]
広大で異質な健康記録から統一された表現を学習する心センシング基礎モデル(CSFM)を提案する。
我々のモデルは、複数の大規模データセットからのデータの革新的なマルチモーダル統合に基づいて事前訓練されている。
CSFMは従来のワンモーダル・ワン・タスク・アプローチより一貫して優れている。
論文 参考訳(メタデータ) (2025-06-23T20:58:12Z) - Non-linear Analysis Based ECG Classification of Cardiovascular Disorders [2.474908349649168]
マルチチャネル心電図に基づく心疾患の検出は、心臓ケアと治療に影響を及ぼす。
本研究では,Recurrenceプロットの可視化を利用した非線形解析手法について報告する。
QRS複合体のようなよく定義された構造のパターン化は、再帰プロットを用いて効果的に利用することができる。
論文 参考訳(メタデータ) (2024-08-02T19:03:53Z) - Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
不規則な心臓リズムを特徴とする不整脈は、深刻な診断課題を呈する。
本研究では,不整脈分類の複雑さに対処するために,ディープラーニング技術を活用した革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-13T19:56:15Z) - Multimodal deep learning approach to predicting neurological recovery
from coma after cardiac arrest [2.374912052693646]
本研究の目的は,臨床データと多チャンネル脳波,心電図などの時系列データを用いて,心停止後のコマから神経学的回復を予測することである。
提案したモデルでは,自然循環復帰後,72ドル(約7,200円)の予測を行うために,隠れテストセットで0.53ドル(約5,800円)のスコアを得た。
論文 参考訳(メタデータ) (2024-03-09T22:29:24Z) - MMA-RNN: A Multi-level Multi-task Attention-based Recurrent Neural
Network for Discrimination and Localization of Atrial Fibrillation [1.8037893225125925]
本稿では,多段階マルチタスク・アテンションに基づくリカレントニューラルネットワークを提案する。
このモデルは、情報インタラクションを強化し、エラーの蓄積を減らすためのエンドツーエンドフレームワークとして設計されている。
論文 参考訳(メタデータ) (2023-02-07T19:59:55Z) - Hybrid Reinforced Medical Report Generation with M-Linear Attention and
Repetition Penalty [45.92216112110279]
そこで本研究では,m-linear attentionと繰り返しペナルティ機構を備えたハイブリッド型医療報告生成手法を提案する。
具体的には、異なる重みを持つハイブリッド報酬を用いて、シングルメトリックベースの報酬の制限を緩和する。
また,最適な重みの組み合わせを近似するために,線形複雑度をもつ探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-14T15:27:34Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
心電図(PCG)信号を心臓状態に分割するための新しい枠組みを提案する。
我々は近年の注目に基づく学習の進歩を利用してPCG信号のセグメンテーションを行う。
提案手法は,ヒトと動物の両方の心臓記録を含む複数のベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-04-02T02:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。