論文の概要: Beyond the Strongest LLM: Multi-Turn Multi-Agent Orchestration vs. Single LLMs on Benchmarks
- arxiv url: http://arxiv.org/abs/2509.23537v2
- Date: Wed, 01 Oct 2025 18:39:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 12:04:55.851632
- Title: Beyond the Strongest LLM: Multi-Turn Multi-Agent Orchestration vs. Single LLMs on Benchmarks
- Title(参考訳): 最も強いLLMを超えて:ベンチマーク上でのマルチTurnマルチエージェントオーケストレーション対シングルLLM
- Authors: Aaron Xuxiang Tian, Ruofan Zhang, Jiayao Tang, Young Min Cho, Xueqian Li, Qiang Yi, Ji Wang, Zhunping Zhang, Danrui Qi, Zekun Li, Xingyu Xiang, Sharath Chandra Guntuku, Lyle Ungar, Tianyu Shi, Chi Wang,
- Abstract要約: 複数の大規模言語モデル(LLM)エージェントが複数回にわたって対話するマルチターンマルチエージェントオーケストレーションについて,回答を反復的に提案したり,コンセンサスに到達するまで投票を行ったりすることで検討する。
GPQA-Diamond, IFEval, MuSRの4つのLCM(Gemini 2.5 Pro, GPT-5, Grok 4, Claude Sonnet 4)を用いて, GPQA-Diamond, IFEval, MuSRの2つの実験を行った。
- 参考スコア(独自算出の注目度): 23.291432147696018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study multi-turn multi-agent orchestration, where multiple large language model (LLM) agents interact over multiple turns by iteratively proposing answers or casting votes until reaching consensus. Using four LLMs (Gemini 2.5 Pro, GPT-5, Grok 4, and Claude Sonnet 4) on GPQA-Diamond, IFEval, and MuSR, we conduct two experiments: (i) benchmarking orchestration against single-LLM baselines; and (ii) ablations on GPQA-Diamond that vary whether agents see who authored answers and whether they can observe ongoing votes. Orchestration matches or exceeds the strongest single model and consistently outperforms the others. Analysis of best-achievable orchestration performance shows potential for further gains. The ablations show that revealing authorship increases self-voting and ties, and that showing ongoing votes amplifies herding, which speeds convergence but can sometimes yield premature consensus.
- Abstract(参考訳): 複数の大規模言語モデル(LLM)エージェントが複数回にわたって対話するマルチターンマルチエージェントオーケストレーションについて,回答を反復的に提案したり,コンセンサスに到達するまで投票を行ったりすることで検討する。
GPQA-Diamond, IFEval, MuSRの4つのLCM(Gemini 2.5 Pro, GPT-5, Grok 4, Claude Sonnet 4)を用いて2つの実験を行った。
(i)単一LLMベースラインに対するオーケストレーションのベンチマーク
(II)GPQA-ダイアモンドの廃止は、エージェントが誰が回答を提出したか、進行中の投票を観察できるかどうかが異なる。
オーケストレーションは最強の単一モデルと一致または超え、他のモデルよりも一貫して優れています。
最高の達成可能なオーケストレーションパフォーマンスの分析は、さらなる利益をもたらす可能性があることを示している。
アブレーションは、著者シップを明らかにすることで、投票と結びつきが増し、進行中の投票は、収束を早めるが、時には早めの合意を得ることができる羊飼いを増幅することを示している。
関連論文リスト
- Learning to Refine: Self-Refinement of Parallel Reasoning in LLMs [102.48588475875749]
本稿では,新しい並列テスト時間スケーリングフレームワークであるGenerative Self-Refinement (GSR)を紹介する。
GSRは一連の候補応答を並列に生成し、その後自己精製を行い、新しい優れた解を合成する。
提案手法は,5つの数学ベンチマークにおいて,最先端性能を実現する。
論文 参考訳(メタデータ) (2025-08-27T06:51:48Z) - How to Train a Leader: Hierarchical Reasoning in Multi-Agent LLMs [16.853362180877593]
我々は、訓練されていないピアエージェントのチームを調整するために、単一のリーダーLDMのみを訓練する階層的なマルチエージェントフレームワークを導入する。
本結果は,複数エージェントLLMシステムにおける協調推論のための単一柔軟なリーダのトレーニングの有効性と効率性を強調した。
論文 参考訳(メタデータ) (2025-07-11T18:34:07Z) - Multi-Agent Collaboration via Evolving Orchestration [61.93162413517026]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な成果を上げているが、そのモノリシックな性質は複雑な問題解決におけるスケーラビリティと効率を制限している。
LLMをベースとしたマルチエージェントコラボレーションのためのパウチスタイルのパラダイムを提案し、中央オーケストレータがタスク状態の進化に応じてエージェントを動的に指示する。
クローズドドメインおよびオープンドメインシナリオの実験により,この手法は計算コストを低減し,優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2025-05-26T07:02:17Z) - HiddenBench: Assessing Collective Reasoning in Multi-Agent LLMs via Hidden Profile Tasks [12.203366267017737]
マルチエージェント LLM における集合的推論を評価するための最初のベンチマークである HiddenBench を紹介する。
ベンチマークを基礎として,このパラダイムをカスタムタスクで形式化し,GPT-4.1グループが分散知識の統合に失敗したことを示す。
次に、カスタムデザイン、先行研究、自動生成から引き出された65のタスクにまたがる完全なベンチマークを構築します。
論文 参考訳(メタデータ) (2025-05-15T19:22:54Z) - MAPoRL: Multi-Agent Post-Co-Training for Collaborative Large Language Models with Reinforcement Learning [26.736078756799635]
新しいポストトレーニングパラダイムMAPoRL(強化学習を用いた協調LLMのためのマルチエージェントポストトレーニング)を導入する。
MAPoRLでは、複数のLLMが独立して独自の応答を生成し、最終回答を協調的に改善するためのマルチターンディスカッションを行う。
MAPoRL検証器は、回答の正しさを検証するスコアを割り当てることで、回答と議論の両方を評価する。
スコアはコトレーニング報酬として機能し、マルチエージェントRLによって最大化される。
論文 参考訳(メタデータ) (2025-02-25T18:33:48Z) - How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments [83.78240828340681]
GAMA($gamma$)-Benchは、マルチエージェント環境における大規模言語モデルのゲーム能力を評価するための新しいフレームワークである。
$gamma$-Benchは8つの古典ゲーム理論シナリオと、LSMの性能を評価するために特別に設計された動的スコアリングスキームを含んでいる。
以上の結果から, GPT-3.5は強い強靭性を示すが, 一般化性は限定的であり, Chain-of-Thoughtのような手法で拡張可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-18T14:04:47Z) - Are More LLM Calls All You Need? Towards Scaling Laws of Compound Inference Systems [76.69936664916061]
LM呼び出し回数がVotteとFilter-Voteのパフォーマンスに与える影響について検討する。
意外なことに、複数の言語タスクにおいて、VoteとFilter-Voteの両方のパフォーマンスは、まず増大するが、LM呼び出しの回数の関数として減少する可能性がある。
論文 参考訳(メタデータ) (2024-03-04T19:12:48Z) - Enabling Weak LLMs to Judge Response Reliability via Meta Ranking [38.63721941742435]
我々は、$textitMeta Ranking$ (MR) と呼ばれるクロスクエリベースの新しい手法を提案する。
MRは、ターゲットクエリ-レスポンスペアを複数の参照クエリ-レスポンスペアにペアでランク付けすることで、信頼性を評価する。
MRはモデルカスケーディングとインストラクションチューニングの2つの実用的応用において、強力なLLMの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-02-19T13:57:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。