論文の概要: DRIK: Distribution-Robust Inductive Kriging without Information Leakage
- arxiv url: http://arxiv.org/abs/2509.23631v1
- Date: Sun, 28 Sep 2025 04:14:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.339554
- Title: DRIK: Distribution-Robust Inductive Kriging without Information Leakage
- Title(参考訳): DRIK:情報漏洩のない配電用インダクティブリグ
- Authors: Chen Yang, Changhao Zhao, Chen Wang, Jiansheng Fan,
- Abstract要約: トレーニング、検証、テストセットをきれいに分離する3x3パーティションを提案する。
インダクティブ・クリグの本質性を念頭に設計した分散ロバスト・インダクティブ・クリグ手法であるDRIKを紹介する。
- 参考スコア(独自算出の注目度): 4.686085914684816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inductive kriging supports high-resolution spatio-temporal estimation with sparse sensor networks, but conventional training-evaluation setups often suffer from information leakage and poor out-of-distribution (OOD) generalization. We find that the common 2x2 spatio-temporal split allows test data to influence model selection through early stopping, obscuring the true OOD characteristics of inductive kriging. To address this issue, we propose a 3x3 partition that cleanly separates training, validation, and test sets, eliminating leakage and better reflecting real-world applications. Building on this redefined setting, we introduce DRIK, a Distribution-Robust Inductive Kriging approach designed with the intrinsic properties of inductive kriging in mind to explicitly enhance OOD generalization, employing a three-tier strategy at the node, edge, and subgraph levels. DRIK perturbs node coordinates to capture continuous spatial relationships, drops edges to reduce ambiguity in information flow and increase topological diversity, and adds pseudo-labeled subgraphs to strengthen domain generalization. Experiments on six diverse spatio-temporal datasets show that DRIK consistently outperforms existing methods, achieving up to 12.48% lower MAE while maintaining strong scalability.
- Abstract(参考訳): インダクティブクリギングはスパースセンサネットワークによる高分解能時空間推定をサポートするが、従来のトレーニング評価設定は情報漏洩と低分散(OOD)一般化に悩まされることが多い。
2x2の時空間分割により,実験データがモデル選択に早期停止を通じて影響を与え,インダクティブクリギングの真のOOD特性を無視できることがわかった。
この問題に対処するために、トレーニング、検証、テストセットをきれいに分離し、リークを排除し、現実世界のアプリケーションをよりよく反映する3x3パーティションを提案する。
この再定義された設定に基づいて、我々は、ノード、エッジ、サブグラフレベルでの3層戦略を用いて、OOD一般化を明示的に強化するために、インダクティブクリグの本質的な特性を念頭に設計した分散ロバスト誘導クリグ手法であるDRIKを導入する。
DRIKは、連続した空間的関係を捉え、エッジを落とし、情報フローのあいまいさを減らし、トポロジカルな多様性を増大させ、ドメインの一般化を強化するために擬似ラベル付き部分グラフを追加する。
6つの異なる時空間データセットの実験では、DRIKは既存の手法を一貫して上回り、高いスケーラビリティを維持しつつ、最大12.48%の低いMAEを実現している。
関連論文リスト
- Evaluating the Efficiency of Latent Spaces via the Coupling-Matrix [0.5013248430919224]
本稿では,次元間の依存関係を直接定量化する冗長指数rho(C)を導入する。
低rho(C)は高い分類精度または低い再構成誤差を確実に予測する一方、高い冗長性は性能崩壊と関連付けられる。
木構造型Parzen Estimator (TPE) は低ロー領域を優先的に探索し,rho(C) がニューラルアーキテクチャ探索を誘導し,冗長性を考慮した正規化ターゲットとして機能することを示唆する。
論文 参考訳(メタデータ) (2025-09-08T03:36:47Z) - Exploring Generalized Gait Recognition: Reducing Redundancy and Noise within Indoor and Outdoor Datasets [24.242460774158463]
一般化歩行認識は、多様な領域にわたる堅牢なパフォーマンスを実現することを目的としている。
混合データセットトレーニングは一般化を高めるために広く利用されている。
クロスドメイン歩行認識を体系的に改善する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-21T06:46:09Z) - Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning [52.70210390424605]
本研究では,文献から選択した3つの帰納バイアスを持つニューラルネットワークオートエンコーダを提案する。
しかし、実際には、これらの帰納バイアスをインスタンス化する既存の技術を組み合わせることは、大きな利益をもたらすことに失敗する。
学習問題を単純化する3つの手法に適応し、不変性を安定化する鍵正則化項とクォーシュ縮退インセンティブを提案する。
結果のモデルであるTripodは、4つのイメージアンタングルメントベンチマークのスイートで最先端の結果を得る。
論文 参考訳(メタデータ) (2024-04-16T04:52:41Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
サンプルが少ない新しいサブカテゴリを認識することは、コンピュータビジョンにおいて不可欠で挑戦的な研究課題である。
既存の文献は、ローカルベースの表現アプローチを採用することでこの問題に対処している。
本稿では,ロバスト・サリエンシ・アウェア蒸留法(RSaD)を提案する。
論文 参考訳(メタデータ) (2023-05-12T00:13:17Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
我々はMixed Graph Contrastive Network(MGCN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
本研究では,非摂動増強戦略と相関還元機構により,潜伏埋め込みの識別能力を向上する。
これら2つの設定を組み合わせることで、識別表現学習のために、豊富なノードと稀に価値あるラベル付きノードの両方から、豊富な監視情報を抽出する。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Adversarial Robustness via Fisher-Rao Regularization [33.134075068748984]
適応的堅牢性は、機械学習への関心の高まりのトピックとなっている。
火はカテゴリーのクロスエントロピー損失に対する新しいフィッシャー・ラオ正規化である。
論文 参考訳(メタデータ) (2021-06-12T04:12:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。