論文の概要: Diffusion Models are Kelly Gamblers
- arxiv url: http://arxiv.org/abs/2509.23937v1
- Date: Sun, 28 Sep 2025 15:27:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.5439
- Title: Diffusion Models are Kelly Gamblers
- Title(参考訳): 拡散モデルはケリーギャンブラーである
- Authors: Akhil Premkumar,
- Abstract要約: 条件拡散ストアには、シグナルを$X$と条件情報$Y$と結びつけるための追加情報がある。
拡散モデルは無限に深い自己エンコーダである、という一般的な観点から、いくつかのニュアンスを指摘する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We draw a connection between diffusion models and the Kelly criterion for maximizing returns in betting games. We find that conditional diffusion models store additional information to bind the signal $X$ with the conditioning information $Y$, equal to the mutual information between them. Classifier-free guidance effectively boosts the mutual information between $X$ and $Y$ at sampling time. This is especially helpful in image models, since the mutual information between images and their labels is low, a fact which is intimately connected to the manifold hypothesis. Finally, we point out some nuances in the popular perspective that diffusion models are infinitely deep autoencoders. In doing so, we relate the denoising loss to the Fermi Golden Rule from quantum mechanics.
- Abstract(参考訳): ベッティングゲームにおけるリターンを最大化するために、拡散モデルとケリー基準との間の接続を描く。
条件拡散モデルでは、信号$X$と条件情報$Y$とを結合するために追加情報を保持する。
分類なしのガイダンスは、サンプリング時に$X$と$Y$の間の相互情報を効果的に強化する。
これは画像モデルにおいて特に有用であり、画像とラベルの相互情報は低く、それは多様体の仮説と密接に結びついている。
最後に、拡散モデルが無限に深い自己エンコーダであるという一般的な観点から、いくつかのニュアンスを指摘する。
その際、量子力学のフェルミ・ゴールデン・ルール(Fermi Golden Rule)にデノナイジング損失を関連付ける。
関連論文リスト
- Don't drop your samples! Coherence-aware training benefits Conditional diffusion [17.349357521783062]
Coherence-Aware Diffusion (CAD) は条件情報のコヒーレンスを拡散モデルに統合する新しい手法である。
CADは理論的に健全であり,様々な条件生成タスクに対して実験的に有効であることを示す。
論文 参考訳(メタデータ) (2024-05-30T17:57:26Z) - Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data [74.2507346810066]
アンビエント拡散(アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散
本稿では,ノイズの多い学習データのみを考慮し,故障のない分布から確実にサンプルを採取する拡散モデルのトレーニングのための最初のフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-20T14:22:12Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Variational Diffusion Auto-encoder: Latent Space Extraction from
Pre-trained Diffusion Models [0.0]
可変オートエンコーダ(VAE)は、生成された画像の品質の問題に直面し、しばしば目立った曖昧さを示す。
この問題は、条件付きデータ分布を近似する非現実的な仮定である $p(textbfx | textbfz)$ が等方ガウス的であることに由来する。
本稿では,エンコーダを最適化することにより,既存の拡散モデルから潜在空間を抽出し,限界データのログ化を最大化する方法について述べる。
論文 参考訳(メタデータ) (2023-04-24T14:44:47Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
拡散モデルに対する近年の関心を踏まえて、生成的に事前学習された視覚表現を再考する。
拡散モデルによる直接事前学習では強い表現は得られないが、マスク付き入力上での拡散モデルと公式拡散モデルをマスク付きオートエンコーダ(DiffMAE)として条件付ける。
設計選択の長所と短所について包括的な研究を行い、拡散モデルとマスク付きオートエンコーダ間の接続を構築する。
論文 参考訳(メタデータ) (2023-04-06T17:59:56Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
大規模テキスト・画像拡散モデルからの密度推定をゼロショット分類に活用できることを示す。
分類に対する我々の生成的アプローチは、様々なベンチマークで強い結果が得られる。
我々の結果は、下流タスクにおける差別的モデルよりも生成的な利用に向けての一歩である。
論文 参考訳(メタデータ) (2023-03-28T17:59:56Z) - Diffusion models as plug-and-play priors [98.16404662526101]
我々は、事前の$p(mathbfx)$と補助的な制約である$c(mathbfx,mathbfy)$からなるモデルにおいて、高次元データ$mathbfx$を推論する問題を考える。
拡散モデルの構造は,異なるノイズ量に富んだ定性デノナイジングネットワークを通じて,微分を反復することで近似推論を行うことができる。
論文 参考訳(メタデータ) (2022-06-17T21:11:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。