論文の概要: Sequential Diffusion Language Models
- arxiv url: http://arxiv.org/abs/2509.24007v1
- Date: Sun, 28 Sep 2025 17:59:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.589094
- Title: Sequential Diffusion Language Models
- Title(参考訳): 逐次拡散言語モデル
- Authors: Yangzhou Liu, Yue Cao, Hao Li, Gen Luo, Zhe Chen, Weiyun Wang, Xiaobo Liang, Biqing Qi, Lijun Wu, Changyao Tian, Yanting Zhang, Yuqiang Li, Tong Lu, Yu Qiao, Jifeng Dai, Wenhai Wang,
- Abstract要約: 拡散言語モデル(DLM)は理論効率が強いが、固定長の復号化とキー値キャッシュとの非互換性によって制限される。
次点と次点の予測を統一するNext Sequence Prediction (NSP)を導入する。
本稿では,事前学習した自己回帰言語モデル(ALM)を最小限のコストで再現可能な逐次拡散言語モデル(SDLM)を提案する。
- 参考スコア(独自算出の注目度): 110.06562906987052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion language models (DLMs) have strong theoretical efficiency but are limited by fixed-length decoding and incompatibility with key-value (KV) caches. Block diffusion mitigates these issues, yet still enforces a fixed block size and requires expensive training. We introduce Next Sequence Prediction (NSP), which unifies next-token and next-block prediction, enabling the model to adaptively determine the generation length at each step. When the length is fixed to 1, NSP reduces to standard next-token prediction. Building on NSP, we propose Sequential Diffusion Language Model (SDLM), which can retrofit pre-trained autoregressive language models (ALMs) at minimal cost. Specifically, SDLM performs diffusion inference within fixed-size mask blocks, but dynamically decodes consecutive subsequences based on model confidence, thereby preserving KV-cache compatibility and improving robustness to varying uncertainty and semantics across the sequence. Experiments show that SDLM matches or surpasses strong autoregressive baselines using only 3.5M training samples, while achieving 2.1 higher throughput than Qwen-2.5. Notably, the SDLM-32B model delivers even more pronounced efficiency gains, demonstrating the strong scalability potential of our modeling paradigm. Project page and codes: https://github.com/OpenGVLab/SDLM
- Abstract(参考訳): 拡散言語モデル(DLM)は理論効率が強いが、固定長の復号化とキー値(KV)キャッシュとの非互換性によって制限される。
ブロック拡散はこれらの問題を緩和するが、それでも固定ブロックサイズを強制し、高価なトレーニングを必要とする。
そこで本研究では,次点と次点の予測を統一するNext Sequence Prediction (NSP)を導入し,各ステップにおける生成長を適応的に決定する。
長さが1に固定された場合、NSPは標準的な次の次の予測に還元される。
NSP上に構築した逐次拡散言語モデル(SDLM)は,事前学習した自己回帰言語モデル(ALM)を最小限のコストで再現できる。
具体的には、SDLMは、固定サイズのマスクブロック内で拡散推論を行うが、モデル信頼度に基づいて連続的なサブシーケンスを動的に復号化することにより、KV-キャッシュ互換性を保ち、シーケンス間の不確実性やセマンティクスの変化に対してロバスト性を向上させる。
実験の結果、SDLMは3.5Mのトレーニングサンプルしか使用せず、Qwen-2.5より2.1高いスループットを実現している。
特に、SDLM-32Bモデルはより顕著な効率向上をもたらし、モデリングパラダイムの強力な拡張可能性を示す。
プロジェクトページとコード:https://github.com/OpenGVLab/SDLM
関連論文リスト
- Diffusion Language Models Know the Answer Before Decoding [56.96815863705218]
拡散言語モデル (DLM) は自己回帰的アプローチの代替として登場した。
我々の研究は、DLMの早期回答収束の見過ごされた特性を強調し、活用する。
Prophetは、早期コミット復号を可能にするトレーニングフリーの高速復号化パラダイムである。
論文 参考訳(メタデータ) (2025-08-27T15:40:25Z) - Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding [51.711605076319216]
拡散に基づく大規模言語モデル (Diffusion LLM) は、並列復号機能を持つ非自己回帰テキスト生成を約束している。
本稿では,双方向拡散モデルに適したブロック単位で近似したKVキャッシュ機構を提案する。
本稿では,信頼しきい値を超えるトークンを選択的に復号し,依存関係違反を軽減し,生成品質を維持できる信頼度対応並列復号方式を提案する。
論文 参考訳(メタデータ) (2025-05-28T17:39:15Z) - Accelerating Diffusion Language Model Inference via Efficient KV Caching and Guided Diffusion [16.99620863197586]
拡散言語モデルは並列トークン生成と本質的に双方向性を提供する。
最先端拡散モデル(ドリーム7B、LLaDA 8Bなど)は推論が遅い。
我々は,トークンアンマキングを監督するために,軽量な事前学習型自己回帰モデルを用いた学習自由度法であるガイドド拡散を導入する。
拡散言語モデルが初めて、広く採用されている自己回帰モデルと同等かつ高速なレイテンシを実現する。
論文 参考訳(メタデータ) (2025-05-27T17:39:39Z) - Dimple: Discrete Diffusion Multimodal Large Language Model with Parallel Decoding [53.82301522384719]
Dimple, the first Discrete Multimodal Large Language Model (DMLLM)を提案する。
我々は,初期自己回帰フェーズとその後の拡散フェーズを組み合わせた新しい訓練パラダイムを設計する。
Dimple-7BはLLaVA-を3.9%上回り、DMLLMは自己回帰モデルに匹敵する性能を達成できることを示した。
論文 参考訳(メタデータ) (2025-05-22T17:55:04Z) - Multimodal Latent Language Modeling with Next-Token Diffusion [111.93906046452125]
マルチモーダル生成モデルは、離散データ(テキストやコードなど)と連続データ(画像、オーディオ、ビデオなど)の両方を扱う統一的なアプローチを必要とする。
因果変換器を用いて連続データと離散データをシームレスに統合する潜在言語モデリング(LatentLM)を提案する。
論文 参考訳(メタデータ) (2024-12-11T18:57:32Z) - Sorted LLaMA: Unlocking the Potential of Intermediate Layers of Large
Language Models for Dynamic Inference [32.62084449979531]
SortedNet を Sorted Fine-Tuning (SoFT) に置き換えることで生成 NLP タスクに拡張する。
我々のアプローチはモデル効率を向上し、推論中に様々なシナリオに対する複数のモデルの必要性を排除します。
以上の結果から,SFT+ICT(Early-Exit)と標準ファインチューニング(SFT+ICT)と比較して,サブモデルの優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-16T11:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。