論文の概要: FameMind: Frame-Interleaved Video Reasoning via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2509.24008v2
- Date: Tue, 30 Sep 2025 07:09:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 12:20:10.403292
- Title: FameMind: Frame-Interleaved Video Reasoning via Reinforcement Learning
- Title(参考訳): FameMind:強化学習によるフレームインターリーブビデオ推論
- Authors: Haonan Ge, Yiwei Wang, Kai-Wei Chang, Hang Wu, Yujun Cai,
- Abstract要約: 現在のビデオ理解モデルは、各質問の特定の推論条件にかかわらず、固定されたフレームサンプリング戦略に依存し、所定の視覚入力を処理する。
この静的アプローチは、視覚的エビデンスを適応的に収集する能力を制限し、広範囲の時間的カバレッジやきめ細かい空間的詳細を必要とするタスクにおいて、最適以下のパフォーマンスをもたらす。
Frame-Interleaved Chain-of-Thought (FiCOT)を通して、モデルが推論中に視覚情報を動的に要求することを可能にする強化学習で訓練されたエンドツーエンドフレームワークであるFrameMindを紹介する。
従来のアプローチとは異なり、FrameMindは複数のターンで動作し、モデルがテキスト推論とアクティブな視覚知覚を交互に切り替え、ツールを使って抽出する。
- 参考スコア(独自算出の注目度): 65.42201665046505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current video understanding models rely on fixed frame sampling strategies, processing predetermined visual inputs regardless of the specific reasoning requirements of each question. This static approach limits their ability to adaptively gather visual evidence, leading to suboptimal performance on tasks that require either broad temporal coverage or fine-grained spatial detail. In this paper, we introduce FrameMind, an end-to-end framework trained with reinforcement learning that enables models to dynamically request visual information during reasoning through Frame-Interleaved Chain-of-Thought (FiCOT). Unlike traditional approaches, FrameMind operates in multiple turns where the model alternates between textual reasoning and active visual perception, using tools to extract targeted frames or video clips based on identified knowledge gaps. To train effective dynamic sampling policies, we propose Dynamic Resolution Frame Sampling (DRFS), which exposes models to diverse temporal-spatial trade-offs during learning, and DRFS-GRPO, a group-relative policy optimization algorithm that learns from outcome-based rewards without requiring frame-level annotations. Extensive experiments on challenging benchmarks like MLVU and VideoMME demonstrate that our method significantly outperforms existing models, advancing the state of the art in flexible and efficient video understanding.
- Abstract(参考訳): 現在のビデオ理解モデルは、各質問の特定の推論条件にかかわらず、固定されたフレームサンプリング戦略に依存し、所定の視覚入力を処理する。
この静的アプローチは、視覚的エビデンスを適応的に収集する能力を制限し、広い時間的カバレッジまたはきめ細かい空間的詳細を必要とするタスクにおいて、最適以下のパフォーマンスをもたらす。
本稿では, Frame-Interleaved Chain-of-Thought (FiCOT) を通じて, モデルが推論中に視覚情報を動的に要求することを可能にする,強化学習で訓練されたエンドツーエンドフレームワークであるFrameMindを紹介する。
従来のアプローチとは異なり、FrameMindは複数のターンで動作し、モデルがテキストの推論とアクティブな視覚知覚を交互に切り替え、識別された知識ギャップに基づいて対象のフレームやビデオクリップを抽出するツールを使用する。
動的サンプリングポリシーを効果的に学習するために、学習中の時間空間トレードオフにモデルを公開する動的解像度フレームサンプリング(DRFS)と、フレームレベルのアノテーションを必要とせずに結果に基づく報酬から学習するグループ相対的なポリシー最適化アルゴリズムであるDRFS-GRPOを提案する。
MLVUやVideoMMEのような挑戦的なベンチマークに関する大規模な実験は、我々の手法が既存のモデルを大幅に上回り、フレキシブルで効率的なビデオ理解において最先端の技術を推し進めていることを示している。
関連論文リスト
- Q-Frame: Query-aware Frame Selection and Multi-Resolution Adaptation for Video-LLMs [13.306662159600677]
適応型フレーム選択とマルチテンポラリスケーリングのための新しいアプローチであるビデオQFrameを紹介する。
Q-Frameは、CLIPのようなテキスト画像マッチングネットワークによって生成されたトレーニング不要のプラグイン・アンド・プレイ戦略を採用している。
ベンチマークデータセットの広範な実験を通じて,Q-Frameの有効性を実証する。
論文 参考訳(メタデータ) (2025-06-27T11:30:51Z) - ReFoCUS: Reinforcement-guided Frame Optimization for Contextual Understanding [52.050036778325094]
ReFoCUS(Reinforcement-guided Frame Optimization for Contextual UnderStanding)は、新しいフレームレベルのポリシー最適化フレームワークである。
ReFoCUSは、参照LMMから派生した報酬信号を用いて、フレームに対するモデル固有の嗜好を反映して、強化学習を通じてフレーム選択ポリシーを学習する。
提案手法は複数のビデオQAベンチマークにおける推論性能を継続的に改善する。
論文 参考訳(メタデータ) (2025-06-02T03:08:07Z) - ViaRL: Adaptive Temporal Grounding via Visual Iterated Amplification Reinforcement Learning [68.76048244253582]
ビデオ理解におけるフレーム選択の最適化にルールベース強化学習(RL)を利用する最初のフレームワークであるViaRLを紹介する。
ViaRLは、下流モデルの応答精度を報奨信号として利用し、試行錯誤によってフレームセレクタを訓練する。
ViaRLは、多様なビデオ理解タスクに対して、時間的基盤性能と堅牢な一般化を一貫して提供します。
論文 参考訳(メタデータ) (2025-05-21T12:29:40Z) - STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding [48.12128042470839]
本稿では,STOP(Spatial-Temporal dynamic Prompting)モデルを提案する。
2つの相補的なモジュールで構成され、フレーム内の空間的プロンプトとフレーム間の時間的プロンプトである。
STOPは、最先端のメソッドに対して一貫して優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-20T09:16:20Z) - Training-Free Action Recognition and Goal Inference with Dynamic Frame Selection [51.004020874336284]
VidTFSはトレーニング不要でオープンなビデオ目標とアクション推論フレームワークである。
提案するフレーム選択モジュールは,フレームワークの性能を大幅に向上させることを示す。
提案したVidTFSの性能を,広範に使用されている4つのビデオデータセット上で検証する。
論文 参考訳(メタデータ) (2024-01-23T03:45:05Z) - Multi-entity Video Transformers for Fine-Grained Video Representation Learning [34.26732761916984]
ビデオ表現学習のためのトランスフォーマーアーキテクチャの設計を再検討する。
このアプローチの重要な側面は、時間パイプラインにおけるシーン情報の共有の改善です。
我々のMV-Former(Multi-entity Video Transformer)は、フレームを時間にわたってリンクされたトークンとして表現されたエンティティのグループとして処理します。
論文 参考訳(メタデータ) (2023-11-17T21:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。