論文の概要: Simulating Post-Neoadjuvant Chemotherapy Breast Cancer MRI via Diffusion Model with Prompt Tuning
- arxiv url: http://arxiv.org/abs/2509.24185v1
- Date: Mon, 29 Sep 2025 02:05:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.686018
- Title: Simulating Post-Neoadjuvant Chemotherapy Breast Cancer MRI via Diffusion Model with Prompt Tuning
- Title(参考訳): Prompt Tuningを用いた拡散モデルによる術後化学療法後の乳癌MRIのシミュレーション
- Authors: Jonghun Kim, Hyunjin Park,
- Abstract要約: ダイナミックコントラスト強調MRI(DCE-MRI)によるネオアジュバント化学療法(NAC)に対する反応の観察
NACに対する反応に影響を及ぼす既知の臨床因子を考慮し,即時チューニングを導入する。
他のモデルと比較して,pCRによる腫瘍径の変化を反映した画像の生成が良好であった。
- 参考スコア(独自算出の注目度): 1.660101408981537
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neoadjuvant chemotherapy (NAC) is a common therapy option before the main surgery for breast cancer. Response to NAC is monitored using follow-up dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Accurate prediction of NAC response helps with treatment planning. Here, we adopt maximum intensity projection images from DCE-MRI to generate post-treatment images (i.e., 3 or 12 weeks after NAC) from pre-treatment images leveraging the emerging diffusion model. We introduce prompt tuning to account for the known clinical factors affecting response to NAC. Our model performed better than other generative models in image quality metrics. Our model was better at generating images that reflected changes in tumor size according to pCR compared to other models. Ablation study confirmed the design choices of our method. Our study has the potential to help with precision medicine.
- Abstract(参考訳): 新アジュバント化学療法(Neoadjuvant chemotherapy,NAC)は、乳がんの主手術前の一般的な治療法である。
ダイナミックコントラスト強調MRI(DCE-MRI)を用いてNACに対する反応をモニターする。
NAC応答の正確な予測は治療計画に役立つ。
そこで我々は, DCE-MRIの最大強度投影画像を用いて, 新たな拡散モデルを用いた前処理画像から, 後処理画像(NAC後3~12週)を生成する。
NACに対する反応に影響を及ぼす既知の臨床因子を考慮し,即時チューニングを導入する。
我々のモデルは、画像品質の指標において、他の生成モデルよりも優れた性能を示した。
他のモデルと比較して,pCRによる腫瘍径の変化を反映した画像の生成が良好であった。
アブレーション試験により提案手法の設計選択が確認された。
私たちの研究は精密医療に役立つ可能性がある。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
本研究では,ダイナミックコントラスト強調画像(DCE)とADCマップを用いた乳癌患者のpCR予測モデルを提案する。
本手法は, 腫瘍関連領域からの特徴抽出を誘導するために放射線を利用した自己注意機構を備えたエンコーダを用いて, DCE MRI と ADC から特徴抽出を行う。
論文 参考訳(メタデータ) (2024-06-05T04:49:55Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - PD-DWI: Predicting response to neoadjuvant chemotherapy in invasive
breast cancer with Physiologically-Decomposed Diffusion-Weighted MRI
machine-learning model [0.0]
DWIと臨床データからpCRを予測するための生理学的に分解されたDWI機械学習モデルPD-DWIを紹介する。
我々のモデルは、現在のリーダーボードの最良の結果と比較して、曲線下(AUC)の面積を大幅に改善します。
論文 参考訳(メタデータ) (2022-06-12T08:59:49Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z) - Implementation of Convolutional Neural Network Architecture on 3D
Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis [0.0]
磁気共鳴画像における前立腺病変の自動分類のための新しいディープラーニング手法を提案する。
提案手法は受信器動作特性曲線値0.87の領域で分類性能を達成した。
提案フレームワークは前立腺癌における医用画像の解釈を補助し,不必要な生検を減らす可能性を反映している。
論文 参考訳(メタデータ) (2021-12-29T16:47:52Z) - DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and
Surgical Margin via Contrast-Enhanced CT Imaging [26.162788846435365]
膵管腺癌(PDAC)は最も致命的ながんの1つである。
3D Contrast-Enhanced Convolutional Long Short-Term Memory Network (CE-ConvLSTM) と命名されたPDAC患者の生存予測のための新しいディープニューラルネットワークを提案する。
腫瘍切除マージンに関連する特徴を学習し,生存率予測を改善することにより,予後とマージン予測の両課題を達成できるマルチタスクCNNを提案する。
論文 参考訳(メタデータ) (2020-08-26T22:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。